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My intent in this article is to help engineers to gain more insight about
Fourier Transform by emphasizing the geometrical aspect of the transform. I
only consider the discrete case, where data is sampled and is of finite length.
Besides its ubiquitous appearance in practical situations, finite discrete data is
easier to work with. To treat the infinite case (whether discrete or continuous),
we need concepts from the field of Functional analysis which may be quite
complex and will probably distract the reader.

I show here that the Discrete Fourier Transform (DFT) of a signal represents
the same signal in a rotated coordinate system embedded in the complex math-
ematical space CN . This representation is definitely not new, but is usually not
emphasized in typical engineering curricula. In my personal opinion, it is very
helpful in strengthening that signals can be considered as an entity and its time
domain image is just one (convenient) representation.

We consider a sampled data, possibly collected through measurement. The
data will be labelled as follows

c = [c0, c1, c2, · · · , cN−1]. (1)

The data can be visualized to be a vector c in the complex space containing
all N tuples CN . Note that we used a zero indexing to label the data sequence.
Usually c is a sequence of real numbers. The figure below shows c in the two
dimensional space.

e0

e1

c

The sampled data c appears in the natural coordinate system e0, e1, where
e0 = [1, 0] and e1 = [0, 1]. In a general space CN , there are N such vectors
e0, e1, e2, · · · , eN−1,

e0 = [1, 0, · · · , 0]

e1 = [0, 1, · · · , 0]

...

eN−1 = [0, 0, · · · , 1].

In the 2D case, a simple signal c = [c0, c1] can be represented in terms of e0
and e1 as

c = [c0, c1] = c0e0 + c1e1 (2)
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The signal strengths c0 and c1 can be interpreted as the projections of the
vector c onto e0 and e1.

As I will discuss in a different article, an important class of dynamic systems
is the class of linear time invariant systems. The response of these systems can
be described convolving the signal c with the impulse response. Additionally,
for a discrete system the convolution operation can be described by a circulant
matrix (operator). Circulant matrices have a very interesting property: they all
have eigenvectors that form another basis (coordinates in CN {e′0, e′1, · · · , e′N−1}
that can be written as

e′k =

[
1√
N

e
2πink
N

]N−1
n=0

.

It can be shown that such set indeed form a complete orthonormal basis. As
usual, the inner product of two vectors u and v is defined as

(u,v) =

N−1∑
k=0

u∗kvk, (3)

where u∗k is the complex conjugate of uk.

As mentioned above, the set {e′0, e′1, · · · , e′N−1} forms an orthonormal basis

that spans CN . This means that we can equally express any signal (c for
example) as a linear combination of the set {e′}. Therefore, we can write

c =

N−1∑
k=0

Cke
′
k. (4)

The coefficients Ck appearing in the above equation are nothing but the
projections of c onto the coordinates {e′k}.

In 2D, e′0 and e′1 become

e′0 =
1√
2

[1, 1]

e′1 =
1√
2

[1,−1],

which is equivalent to rotating e0 and e1 by -45 degrees as shown below



4

e0

e1

e′0

e′1

In C3 e′1, e
′
2 are complex. Please see the figure below
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To find Ck appearing in (4) we use the important concept that c is a unique
entity regardless of the representation. This means that

N−1∑
k=0

ckek =

N−1∑
k=0

Cke
′
k. (5)

We then exploit the orthogonality of the different e′k and take the inner
product of both sides of the above equation by e′m. This means that all the
terms at the right hand side vanish except for e′m. Therefore,

N−1∑
k=0

(e′m, ek)ck = Cm. (6)

Note that ek(i) = 0 unless i = k. Therefore it is straightforward to show
that

(e′m, ek) =
1√
N

e−
2πimk
N . (7)

Therefore, we can write Cm as

Cm =
1

N

N−1∑
k=0

cke
− 2πimk

N . (8)

The above expression is precisely the discrete Fourier transform (DFT) of
the sequence {ck}’. From a geometric point of view, it is the formula to calculate
the components of the vector c onto the coordinate system e′k. Therefore,
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The projections of c in the e coordinate system represent the original se-
quence, while the projections in the e′ system are the DFT components.

In 2D, the relation between the signal and its DFT can be plotted as shown
below

e0

e1

e′0

e′1

c0

c1

C0

C1

Plancherel and Parseval’s theorem
The norm of the vector c is an invariant quantity. This means that it does

not depend on the coordinate system. Accordingly

N−1∑
k=0

|ck|2 =
1

N

N−1∑
k=0

|Ck|2, (9)

which is known as Plancherel theorem. Similarly the inner product of any
two vectors u and v in CN is invariant. Therefore,

(v, u) =

N−1∑
k=0

v∗kuk =

N−1∑
k=0

V ∗k Uk, (10)

which is Parseval’s theorem.
Uncertainty Relation
One of the most important properties of Fourier transforms is the uncertainty

principle. The uncertainty principle is a fundamental concept in Quantum me-
chanics.

Assume for now that c = en. Geometrically this means that c is in the
direction of the basis vector en and orthogonal to other ek, where k 6= n. Using
, it is easy to show that such vector has projections of equal strength in the e′

coordinate system. This means that being aligned with one of the coordinate
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axes of e (localized) implies that c is ”equally distributed” over e′k vectors. This
is an emphasis of the uncertainty principle. In Quantum mechanics for example,
if the particle state (think of it as the vector c) is aligned with one of the vectors
that represent position (the e system of coordinates) then its momentum (the
Fourier transform of position ) has equal projections onto all e′k and hence not
determined.


