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describes arbitrary space–time metamaterials. It is shown that
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operator exhibits. The wave propagation inside the space time
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be rigorously determined via the expansion in the operators
eigenvectors (space–time Bloch waves). Two examples are
provided that demonstrate how to apply the framework. In the
first, a space time modulated composite right left handed
transmission line is studied and results are verified via time
domain computations. Furthermore, we apply the theory to
explain the non-reciprocal behaviour observed on a nonlinear
transmission line manufactured in our lab. Bloch-waves are
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1. Introduction
Recently, there has been a surge of interest in studying the properties of space–time modulated systems
that arise from the intrinsic asymmetric interaction of the space–time harmonics [1,2]. Such asymmetry
breaks the principle of reciprocity, hence enabling the design of novel non-reciprocal devices such as
nonreciprocal antenna [3–5], magnet-less circulators [6–8], one-way beam splitters [9], isolators [10,11]
and space–time modulated metasurfaces [12,13]. On top of that, systems that possess time and/or
space–time periodic elements may not be constrained by the physical limitations of linear time
invariant (LTI) systems. For instance, a time modulated reactance does not necessarily result in a total
reflection of an incident wave impinging the structure, hence enabling the accumulation of energy
[14]. Additionally, a time switched transmission line was demonstrated to have a broadband matching
capability not limited by the Bode–Fano criteria that impose a return loss/bandwidth trade-off [15,16].
Taravati & Caloz [17] provide an excellent review on the developments, applications and methods of
analysis of space–time media.

The interest in space–time modulated media dates back to the middle of the last century in the context
of understanding the properties of distributed parametric amplifiers [18–23]. The salient properties of
such media emerge from Bloch-Floquet theory, which states that the eigensolutions are the sum of
infinite space time harmonics. Unlike LTI systems, space–time modulation leads to an asymmetric
dispersion relation, where at a given frequency ω, the forward and backward wavenumbers are not
necessarily equal [1,2].

In general, space–time modulated systems are built from nonlinear lumped elements. The interaction
of the nonlinearity and a strong pump results in a spatio-temporal modulation of one or more system
parameters [24,25]. In a conventional treatment, it is generally assumed that the system is distributed
such that the modulation wavelength is much longer than the length of the unit cell. Such an
assumption permits describing the system via partial differential equations (PDEs). Upon the
application of the Bloch–Floquet condition, the PDEs reduce to an infinite system of homogeneous
equations, where the eigenmodes can be calculated from its non-trivial solutions. Very recently, we
have developed a circuit based framework that extends the theory of linear time periodic (LTP)
circuits and systems, developed in [26–28], to space–time structures [29]. The dispersion relation
emerges from the application of the Bloch condition to a unit cell that links its input and output time
harmonics. Therefore, it is valid for both electrically long and electrically short systems. Furthermore,
the framework enables the exploration of various structures such as Composite Right Left Handed
(CRLH) transmission lines (TLs) and non-sinusoidal periodic modulation [29]. The governing
equations reduce to generalized telegraphist’s equations when the unit cell is infinitesimally small.

In the current manuscript, we exploit the circuit approach [29] to develop a translation operator and
explore its basic properties. We show that the approach is, in principle, equivalent to how periodic
structures are described via the diagonalization of the translation operator, where the eigenmodes are
nothing but the Bloch waves. Additionally, for a generic unit cell and an arbitrary periodic modulation,
the boundary value problem is solved via the expansion of the solution inside the structure in terms of
the eigenmodes.

Section 2 starts with a brief review of how the immittance matrix, a generalization of the immittance
circuit parameter in LTI systems, emerges from Bloch–Floquet theorem. We then proceed by showing
how elements in cascade combine and how the ABCD parameters change between unit cells. In §3,
we focus on the eigenvalue problem that describes the system modal behaviour. The invariance of
eigenvalues and eigenvectors resulting from the transformation of the system translation operator is
presented. We also show that for a generic space–time circuit, the eigensolutions along the modulation
line are equivalent. Furthermore, the section discusses how the LTI and LTP systems are formally
equivalent in the sense of eigen-decompositions in time and spatial domains. Section 4 demonstrates
how the driven modal solution is expanded in terms of the system eigenmodes. Additionally,
expressions of the transmission and reflection coefficients are derived. In §5, two systems are studied.
In §5.1, a CRLH TL is fully described using the developed machinery and results are compared to
time domain simulation. Dispersion relations, eigenvalues, eigenvectors, waveforms and transmission
coefficient are computed for both the right-hand (RH) and left-hand (LH) regimes. Subsection 5.2
applies the framework to a nonlinear RH TL that has been fabricated in our lab. The modulation is
achieved via a strong pump and hence, the TL operates in the sonic regime [22]. Dispersion relations,
eigenvalues and waveforms are computed and compared to simulation. Furthermore, the scattering
parameters are calculated and compared to measurements.
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2. Translational properties of immittance and ABCD matrices
In LTP circuits, the Bloch Floquet theorem allows the voltage and current harmonics to be related via
immittance matrices [26,29]. An immittance matrix is best visualized as a generalization of the concept
of immittance, a scalar complex quantity, in LTI systems. Before proceeding with the detailed
description, it is worth noting that we represent the (m, n) element in matrix A, using the notation
An

m, i.e. the subscript (superscript) represents the row (column).
Without loss of generality, consider a time modulated capacitance ~CðtÞ. The eigensolutions of LTP

systems are in the form of p(t)exp (iωt), p(t + T ) = p(t) [29,30], hence the voltage–current relation can be
described compactly by the matrix equation

I ¼ ~YV: ð2:1Þ
The entries of an arbitrary kth row can be determined from the zeroth row, where

~Y
kþl
k (v) ¼ ~Y

l
0(vk), ð2:2Þ

where vk W vþ kv̂.
Consider now a structure where the above capacitance is modulated via a travelling wave with speed

n̂, i.e.

~Cðt, xÞ ¼ ~C t� x
n̂

� �
,

and x is a multiple of the underlying spatial lattice distance p (i.e. x = np, n =−∞,…,− 2,− 1, 0, 1, 2,…,
∞). Again, expanding ~C in its Fourier components, and noting that the modulation frequency v̂ and
wavenumber b̂ are related by v̂ ¼ n̂b̂, imply that

~Y
p
q ðxÞ ¼ ~Y

p
q ð0Þ e�i[q� p]b̂x: ð2:3Þ

Thismeans that the elements in a given rowof an admittancematrix ~YðxÞ are those in the same rowof ~Yð0Þ, but
multiplied by a phasor that rotates in the counter clockwise direction as we go from left to right. Additionally
for a fixed column, the elements from top to bottom are multiplied by a clockwise rotating phasor.

In the subsequent development, the ABCD parameters of the unit cell will be shown to play a
significant role. They are formed via the multiplication of LTP impedance and admittance matrices.
Therefore, it is crucial to understand the properties of the product of matrices representing space–time
modulated elements. Consider for instance the series Z and shunt Y of a lumped right-handed
transmission line. It can be shown that the (r, r− s) element of ðZYÞr�s

r at position x

ðZYÞr�s
r ðxÞ ¼ ðZYÞr�s

r ð0Þ e�isb̂x:

Therefore, we have the following important property:

Property 2.1. For a space–time periodic structure consisting of a cascade of space–time periodic unit
cells, the ABCD parameters X =A, B, C andD for a unit cell x away from the origin are related to the ones
at the origin by

Xp
qðxÞ ¼ Xp

qð0Þ e�i½q�p�b̂x ¼ Xp
qð0ÞGx=p

q�p, ð2:4Þ

where Gq�p W exp ð�i½q� p�b̂pÞ. Hence, the ABCD parameters follow the same transformation of
immittance matrices (equation (2.3)). Note that if the modulation wavelength l̂ W 2p=b̂ is a multiple
of p, and when x is a multiple of l̂, G becomes the identity matrix and Xp

qðxÞ ¼ Xp
qð0Þ as expected.
3. Eigenvalue problem and dispersion relation
The harmonics at the terminals of the nth unit cell are related by the ABCD transfer matrix

V½n�
I ½n�

� �
¼ A B

C D

� �
n

V½nþ 1�
I ½nþ 1�

� �
,

or in the more convenient form

Cn ¼ PnCnþ1, ð3:1Þ
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where Cr W ðV½r�, I ½r�Þt is an infinite-dimensional vector that stores the amplitude of all time harmonics
at x = rp; and Pn is the ABCD matrix of the nth unit cell.

We seek solutions of the form

Cnþ1 ¼ e�ibpLCn, ð3:2Þ

where

L ¼ G 0
0 G,

� �

and Grr ¼ Gr ¼ expð�irb̂pÞ and zero otherwise. The condition (3.2) is equivalent to seeking a travelling
wave solution of the form

P1
r¼�1 C0r ei½vrt�brnp�, where br W bþ rb̂. Therefore, (3.1) and (3.2) can be

combined to give the eigenvalue problem (EVP)

TnCn ¼ PnLCn ¼ eibpCn: ð3:3Þ

Note that Tn W PnL acts as a translation operator, where exp (iβp) and Cn are its eigenvalue
and eigenvector, respectively. Furthermore, Tn is a function of the operating frequency ω. If
Tn is indeed a translation operator, we should expect that the eigen-solutions are independent
of the unit cell. The next property shows that Tn is indeed independent of the unit cell (i.e.
independent of n).

Property 3.1. Consider the EVP (3.3) at which β and Cn is a solution. Then

b0 ¼ b, ð3:4Þ
and the eigenvector

V0
k|{z}

at nþ 1

¼ Vk|{z}
at n

Gk, � I0k|{z}
at nþ 1

¼ Ik|{z}
at n

Gk ð3:5Þ

is a solution of

Tnþ1Cnþ1 ¼ eib
0pCnþ1:

The proof of property (3.1) is presented in the electronic supplementary material. Equations (3.4)
and (3.5) imply that regardless of the unit cell used, the EVP will always result in a unique
propagation constant β. Additionally, the kth component of the eigenvector changes in a way that is
equivalent to the phase delay of the kth harmonic along a unit cell, which is equal to kb̂p. Therefore,
the solution of the EVP (3.3) is independent of the unit cell.

The above result can be generalized to

Corollary 3.2. The solution of (3.3) using Tn+q is

b0 ¼ b

and

V0
k ¼ VkG

q
k, eeI0k ¼ IkG

q
k:

It is worth digressing here and discussing how the above formulation has the same mathematical
foundations used to describe LTI systems. The discussion provides a deeper insight into the
mathematical structure of the framework and highlights the physical similarities and differences
between LTI and LTP systems. We refer to figure 1 that depicts a conceptual diagram of the applied
flow. Figure 1a illustrates the logical flow one usually applies to describe LTI circuits. The basic
relations of a two port circuit are given via differential and algebraic equations, leading to an LTI state
space representation of the system. This in turn allows the output parameters to be related to the
input ones via the convolution with the 2 × 2 impulse response matrix, shown in the left side of
the figure by the A(t), B(t), C(t) and D(t) functions. The convolution operation with the impulse
response can be easily diagonalized, where the set of complex functions exp (iωt) form the eigen-
functions of the convolution operator P�. Hence, it allows the system to be represented by simple
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Figure 1. Eigen-decomposition of (a) LTI and (b) LTP systems in the frequency and subsequently in the spatial domains.
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matrix multiplications at each frequency ω as shown in the middle panel of figure 1a. In other
words, the frequency domain representation is merely an expansion of the input and output
parameters in the eigen-functions basis of P�. For arbitrary time varying circuits, the output and input
parameters can be related via the aid of the state transition matrix, rendering the analysis of such
general systems a bit challenging. Fortunately for LTP systems, Floquet theorem tells us that the eigen-
functions are in the form

P
Qr expðivrtÞ. Therefore, the input and output voltages and currents

become infinitely long complex vectors that store the coefficients Qr and are connected via the
multiplication with LTP ABCD matrix, as equation (3.1) emphasizes. In another words, the LTP
ABCD matrix is the operator that connects the output and input vectors expanded in the LTP
temporal eigen-functions.

When two port LTI networks are cloned to form a periodic structure, the network ABCD matrix
does not change as one moves from one unit cell to the other. Such ABCD matrix maps the input
applied to one of its terminals to the output, hence it represents the translation operator T (i.e. T =
P). T is a linear operator in the two-dimensional complex space C2. Diagonalization of T is
equivalent to finding its eigen-functions, which are nothing but the Bloch waves. The eigenvalues
are conveniently represented as exp (iβp), where p is the unit cell length. Therefore for each ω,
representing a temporal eigenvalue, there are two spatial eigenvalues ±β that diagonalize the spatial
operator. The ordered pair (ω, ± β) describes the propagation of waves in a periodic structure at ω.
On the other hand, property 2.1 implies that the ABCD matrix Pn in a space–time modulated
structure changes from one point to the other (i.e. depends on n). Nevertheless, property 3.1, along
with equation (3.3) shows that Tn does indeed act as a translation operator. Since the space of time
harmonics is infinite, the diagonalization of Tn (i.e. enforcing the Bloch condition) results in an
infinite number of eigen-functions as the last panel of figure 1b illustrates. Note that if the
modulation is removed L reduces to the identify matrix and Tn in equation (3.3) becomes the ABCD
matrix Pn at frequencies ωr. Although the mathematical spaces for the LTI and LTP systems are
different, the circuit based formalism suggests that space–time structures are formally equivalent to
the well-known periodic structures. The infinite dimension of the LTP space and its translation
operator highlights the richness in the spectrum (i.e. the eigen-functions) of space–time periodic
structures, which eventually may lead to the possibility of breaking the physical limitations of LTI
circuits. Ultimately, the properties of the LTI translation operator are dictated from the constraints of
its basic circuit elements (stability, passivity, reciprocity and physical realizability), the properties
of LTP operators hinge upon the fundamental characteristics of LTP elements, an area yet to
be explored.
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Figure 2. (a) A typical dispersion relation for a right-handed medium, when the modulation is very small (i.e. the bandgaps
approach zero width). The main branches are distinguished by the olive lines (online). At a given frequency, shown by the
blue dashed line, different modes are possibly excited. The modes are identified by the branch number r with a subscript ±
depending on the sign of β. (b) The dispersion relation of an RH TL when the modulation strength is infinitesimally small.
Different modes at ω = 1.5 are highlighted showing their corresponding counterparts on the main branch, albeit at different
frequencies.
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For any given frequency ω and in the limit of infinitesimal modulation strength, the A, B, C and D
matrices become diagonal and the eigenmodes become the solution of the LTI system at frequencies
ωr. The propagation constants βr satisfy the well-known dispersion relation [31,32]

brp ¼ cos�1 Ar
rðvÞ þDr

rðvÞ
2

� �
:

Furthermore, the eigenvectors become the Bloch waves. Figure 2a depicts the dispersion relation of an
RH TL for an infinitesimal modulation strength. The modes are labelled as shown for different values
of r. Note that for each r, there are two branches representing the solutions ±βr.

For the subsequent discussion, it is useful to introduce the harmonic shift operator SU .

Definition 3.3. SU is a linear operator on Cn ¼ ½� � � , ck�1, ck, ckþ1, . . .�tn that has the following effect

(SUCn)k ¼ (Cn)kþ1:

i.e. SU shifts the vector C up by one position. Similarly SD W SU�1 shifts the vector down by one
position.

If (ω, β) is a solution of (3.3), then the following is a general property of arbitrary space time
modulated structures (Proof in electronic supplementary material).

Property 3.4. Let (β, ω) be a solution to the eigenvalue problem (3.3), then ðbþ lb̂, vþ lv̂Þ, where
l [ Z is also a solution. Moreover if Cn is the eigenvector at (β, ω) then Sl

UCn is an eigenvector at
ðbþ lb̂, vþ lv̂Þ.

Corollary 3.5. All points ðbþ lb̂, vþ lv̂Þ along the line v0 ¼ vþ n̂ðb0 � bÞ are equivalent in the sense that
the eigenvectors are all related by the harmonic shift operator SU .

The previous property should not be surprising. The change v ! vþ lv̂ and b ! bþ lb̂ is
equivalent to re-numbering the harmonics. Such property can be exploited to understand how the
different modes at a given frequency behave by restricting the analysis to the zero-order branches
only. Consider for example the dispersion relation shown in figure 2b. Suppose one is interested in the
modal behaviour at v ¼ 1:5 a:u. Three modes are highlighted in the figure. Property 3.4 shows that
the (2) eigenvector is a shifted copy of the (2’) one. The (2’) mode is at the intersection point of the 0+
and 1− branches. As is already established when the modulation strength is relatively large, this point
corresponds to the centre of a bandgap, where there is a strong interaction with the −1 harmonic
[21,22]. Therefore, the voltage of this mode will contain non-zero entries only in the −1th and 0th



vs(t) n = 1 n = N ZL

Z0 P1 P2

V(ref )

V(inc) v(L) (t)

iL(t)

Figure 3. N unit cells of a space–time periodic structure connected to an input voltage source with a reference impedance Z0 and a
load of impedance ZL.
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locations. Property 3.4 implies that at v ¼ 1:5 a:u:, the (2) mode has a zero entry in the 0th location and
hence does not couple to the excitation at ω.

For the subsequent analysis, the kth eigenvalue and the corresponding eigenvector will be identified
by the (k) superscript. In general, the mode voltage VðkÞ and current I ðkÞ are related via the Bloch
Admittance matrix

��Y ¼ [eib
ðkÞpe�DG]�1 CG:

The general solution is the superposition of all modes

v½n� ¼
X1
k¼1

X1
r¼�1

akVðkÞ
r ei½vrt�b

ðkÞ
r np� þ c:c: ð3:6Þ

and

i½n� ¼
X1
k¼1

X1
r¼�1

akI ðkÞ
r ei½vrt�b

ðkÞ
r np� þ c:c: ð3:7Þ
4. Boundary value problem
Consider the structure in figure 3 that represents a generic space–time modulated structure that is
connected to a source and load. The incident (v(inc), i (inc)) and reflected (v(ref ), i (ref )) waves appear on a
transmission line of characteristic impedance Z0 (usually a 50 V microstrip or coaxial TL) that
connects the structure to a voltage source vs(t). At the input side, vs(t) = 2v(inc)(t). At the input of the
first unit cell (x = 0), the boundary conditions are imposed by requiring the voltage and current to be
continuous at the input and output ports. Therefore, for a sinusoidal excitation vs(t) =Vscos (ωt + ϕ)
and a load impedance ZL, one gets

X1
k¼1

Vinc1,k
r ak ¼ Vincd0r , r ¼ � � � , � 2, � 1, 0, 1, 2, . . . , ð4:1Þ

where Vinc1,k
r W ðVðkÞ

r þ Z0I ðkÞ
r Þ is the contribution of the kth mode to the wave incident on P1 and Vinc =

Vs e
iϕ/2. Equation (4.1) shows that the coefficients ak are such that the net effect of the branches is

balanced with the excitation at frequency ω and they destructively interfere at any other harmonics. At
the load side,

X1
k¼1

akVinc2,k
r e�ibðkÞ

r Np ¼ 0, ð4:2Þ

where Vinc2,k
r W ðVðkÞ

r � ZLI ðkÞ
r Þ=2 is the wave reflected from the load ZL when the output port is

terminated in ZL. For the remainder of the manuscript, it is assumed that ZL =Z0 (i.e. the structure is
terminated in the reference impedance Z0). Therefore, (4.2) implies that the ak coefficients are the ones
that result in a null reflection from the load at all harmonics.

In practical applications and away from the luminal regime, only a limited number NH of
harmonics are significant. For convenience, we consider NH to be an odd number 2N s þ 1, where
N s ¼ 0, 1, 2, . . .. This selection allows the symmetric inclusion of harmonics from �N s to N s.
Furthermore, we consider the number of branches to be 2NH to account for forward and backward
waves. For each harmonic, the truncated versions of (4.1) and (4.2) provide two equations in the 2NH
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coefficients ak. Taking all NH harmonics into account, we end up with a system of 2NH equations in 2NH

unknowns that can be written as

���

Vinc1,1
�N s

Vinc1,2
�N s

� � � Vinc1,2NH
�N s

..

. ..
. ..

. ..
.

Vinc1,1
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. ..
. ..

. ..
.

Vinc1,1
N s
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N s
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. ..
. ..

. ..
.
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0

..

. ..
. ..

. ..
.
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N s

Vinc2,2
N s

� � � Vinc2,2NH
N s

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

a1
..
.

aN sþ1

..

.

aNH

aNHþ1

..

.

..

.

..

.

a2NH

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

¼

0
..
.

VðincÞ

..

.

0
..
.

..

.

..

.

..

.

0

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

ð4:3Þ

From the solution of (4.3), the transmission coefficient of the rth harmonic Sðr,0Þ21 can be calculated.
n
Sci.8:210367
5. Results and discussion
To verify and demonstrate the use of the machinery developed in §§3 and 4, we will apply the framework
to analyse two main structures. The first is a space–time periodic CRLH TL. Such an idealistic model
allows a thorough analysis of the propagation behaviour that can be compared with state space time
domain simulations. Next, we use the framework to reproduce and give insight into the non-
reciprocial behaviour observed on a nonlinear right-handed transmission line (NL RH TL) that has
been manufactured in our lab. Although the analysis carried out below is not meant to be exhaustive,
it provides a useful and a systematic procedure to describe complex space–time periodic structures.
5.1. Composite right-left handed space–time modulated TL
TheCRLH consists ofN = 40 unit cells such as the one shown in figure 4,where the right-handed capacitance
CR is space–time modulated. The first unit cell is connected to a source of impedance 50 V. The load is also
assumed to be 50 V. KCL and KVL alongwith the current and voltage relations in the time domain are used
to derive a state space model (SSM) of the circuit that can be written as

_x ¼ AðtÞxþ BðtÞu,
where x is anN × 1 vector that stores the state variables (current in inductors and voltages across capacitors),
A is aN ×Nmatrix, B is aN × 1 vector that connects the input excitation to the states. The unit cell shown in
figure 4 can be divided into three sub-units: (1) the LTI series impedance Zse≜iωLR− i/ωCL, (2) shunt
admittance 1/ωLL, and (3) the LTP admittance ~YR. Hence, the ABCD matrix of the unit cell can be formed
by cascading its three sub-units. Therefore, the different eigenvalues eib

ðkÞp and the corresponding
eigenvectors ðVðkÞ, I ðkÞÞt are determined through the use of (3.3). Subsequently, when the TL is excited by
a sinusoidal source of frequency ω, the boundary value problem (4.3) is solved and the modes coefficients
ak are computed.

The LTP dispersion relation when CR is sinusoidally modulated, i.e. CR ¼ CR0½1þM cosðv̂t� b̂npÞ� is
obtained from the eigenvalues as depicted in figure 5a. The LTI dispersion relation (when M = 0) is
superimposed to highlight the right-hand (RH) and left-hand (LH) regions. The LH region is in the
low-frequency range, frequencies below 1 a.u., where the phase and group velocities are opposite
[33,34]. For a balanced operation, the series and shunt resonances were both set to unity [34].
Figure 5b,c shows a close up view of the dispersion relation in the RH and LH regions, respectively.
Different modes are highlighted and labelled. It is worth noting that whenever two branches appear
to intersect, two complex conjugate propagations constants (γ =−iβ) are generated. The point of
intersection represents the centre of a bandgap, where strong coupling with time harmonics may be
significant. For instance consider figure 5b, where points 7 and 8 represents two eigenvectors that
have two complex conjugate propagation constants.

The eigenvalues,when the frequency is at the centre of the RHBG (f ¼ 1:5 a:u.), are depicted in figure 6a.
Unlike the first four, the higher eigenvalues result in complex conjugate propagation constants. This is not
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surprising since they correspond to points inside BGs as figure 5b shows. For any given eigenvalue, the
magnitude of the components of the corresponding eigenvector is plotted in figure 6b. For a given
eigenvector (mode), the y-axis represents the strength of the rth harmonic. According to (3.6), the
waveform inside the space–time periodic structure is the linear superposition of the different
eigenvectors. Figure 6d plots the magnitude of the expansion coefficient ak. Clearly, the wave behaviour is
dominated by the 8th eigenvector, which corresponds to one of the modes inside the BG of the main
branch as illustrated in figure 5b. For such modes, figure 6b shows that the 0th and −1th harmonics are
dominant and of the same order of magnitude, inferring a strong interaction between the fundamental
and its −1th harmonic. Additionally, there is a small contribution coming from the 6th and 9th modes.
The figure also shows that the 6th and 9th modes have significant components at the 0, + 1 and 0,− 1
enteries, respectively. Note that the behaviour of the two modes can also be deduced using property 3.4.
Indeed, the equivalent mode of the 6th (9th) one on the main branch is inside the first BG. Hence the
equivalent mode has non-zero values at the –1 and 0 entries. Since the eigenvector of the 6th (9th) mode
is a down (up) shifted copy, it has non-zero values at the +1, 0 (−1, 0) entries, in agreement with figure 6b.
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To assess how accurately the LTP approach can predict the wave behaviour inside the structure, the
waveform at the middle of the RH BG, at the three frequencies ω, v� v̂ and vþ v̂ are calculated using
(3.6) and compared with the solution of the SSM. The time domain data obtained from the SSM
simulation is transformed to the frequency domain, where the frequencies of interest are isolated.
Figure 6c reports the amplitude of the three harmonics. As shown, there is an excellent agreement
between LTP and SSM. Additionally, the amplitude of the main component at ω rapidly decreases as
the wave penetrates into the structure, where it is scattered (mainly) in the −1 harmonic back to the
source. Furthermore, there is a non vanishing contribution, coming from the +1 harmonic, as a result
of the excitation of the 6th mode.

The same procedure is repeated but for ω at the centre of the LH BG (figure 5c). Unlike the RH BG, the
incident and modulating waves are contra-directional. This is due to the left handedness of the CRLH in
this regime. Therefore, the incident wave scatters in the vþ v̂ (blue shifted) as figure 7c highlights. The
scattering, however, is not as strong as in the RH BG case. This is due to the smaller magnitude of the real
part of the eigenvalue (figure 7a) and witnessed by the slight reduction of the amplitude of the
fundamental component (figure 7c). It is expected that a modulation of LL or CL will result in a wider
LH BG. Note also that unlike the dominant mode in the RH BG (mode 8, figure 6a), the dominant
mode in the LH BG has a negative phase velocity as witnessed by the imaginary part of βp (mode 7,
figure 7a).

Finally, the transmission coefficient is calculated over a wide frequency range that includes both the
RH and LH BGs. Figure 8a,b presents the results, when the incident and modulation waves are co- and
contra-directional, respectively. The figures show that LTP-based calculations are in a very good
agreement with SSM. Furthermore, space–time modulation has the effect of attenuating the
transmitted signal (−15 dB for the LH BG and −30 dB for the RH BG), compared to almost 0 dB when
modulation is absent.
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5.2. Analysis of a nonlinear right-handed transmission line (NLRHTL)
A modulating sinusoid vm(t) and an input signal vs(t) were applied to a nonlinear right-handed
transmission line (NLRHTL) built from 20 unit cells, as shown in figure 9a. The inputs vm and vs are
combined using a directional coupler as highlighted. Each unit cell consists of a p � 6:5mm long
microstrip loaded at its centre by a varactor (M/A-COM, MA46H120). The circuit is etched on a 25
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mil thick Rogers RO3010 substrate. The varactors are bonded in place using H20E conductive epoxy. For
more details about the transmission line and the experimental set-up, refer to the electronic
supplementary material.

The capacitance of the varactor Cv depends on the voltage across its terminals u(t) = um(t) + us(t),
where um(t) and us(t) are the voltages due to the modulating input and signal, respectively. The
current through the varactor is given by

iðtÞ ¼ CnðuÞdudt :

Since CvðuÞ ¼ Cvðum þ usÞ � CnðumÞ þ usdCn=dtjum , it can be shown that the current is(t) due to the signal
excitation is

isðtÞ ¼ d
dt

CnðumÞusðtÞ,

where Cn(um) is the capacitance evaluated at um(t), which is periodic with frequency v̂. Hence, the system
is linearized about the limit cycle steady state [35]. Figure 9c shows the varactor’s equivalent circuit. Rs

models the ohmic losses in the semiconductor bulk, contact and bondwires, Ls accounts for the
inductance of the bondwires, and C represents the varactor capacitance. The different circuit
parameters were extracted from measuring the S parameters at different bias voltage and fitting the
response via the use of the vector fitting technique [36].

At low frequency, the microstrip line can be described by lumped circuits as in figure 9b. The p/2
microstrip line section is modelled as a lumped LC network, such that L = τdZc and C = τd/Zc, where
τd and Zc are the delay and characteristic impedance of the microstrip, respectively. The lumped
circuit approximation allows the convenient representation of the NL RH TL in an SSM form. In this
case, the biasing circuit and blocking capacitances can be included as in figure 9b.

5.2.1. Dispersion relation

As a first step, the LTI dispersion relation of the structure is extracted from measuring the small signal S
parameters for different bias voltages and compared to the circuit models. Figure 10 shows the dispersion
relation curves of four bias voltages. Clearly, both the lumped and distributed circuit models are in
agreement with measurement, confirming the validity of the lumped circuit model.
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In the presence of the modulating signal with frequency v̂, the varactor capacitance Cn becomes
periodic with a period of 2p=v̂. Therefore, it can be expanded in Fourier series

CnðtÞ ¼
Xþ1

r¼�1
~Cr eirv̂t:

Since the amplitude of modulation is large (um≫ us), the DC capacitance ~C0 may deviate from the
small signal value. In the subsequent analysis, the DC and first harmonic only (~C0 and ~C1) will be
considered. They are calculated from a time domain simulation of NLRHTL. The system differential
equations are solved to compute the voltages um across the different varactors. Consequently, ~C0 and
~C1 are calculated from the Fourier transform of C(um). Figure 11a shows the computed spectrum of Cv

across the 10th varactor. The DC capacitance ~C0 has increased from approximately 1.2 pF to 1.35 pF.
The modulation strength M W ~C1=~C0 � 0:2 when the excitation is approximately 10� 15dBm.
Figure 11b demonstrates how ~C0 and ~C1 change from one unit cell to the other. Although not
constant, we will assume that both ~C0 and ~C1 are constants and fixed to their average values. This
assumption allows the application of the LTP formalism and captures the main essence of the system,
as will be shown below.

The unit cell can be represented by the block diagram in figure 12. Hence the ABCDmatrix of the unit
cell is T ¼ TLTITLTPTLTI. For the microstrip, the ABCD parameters are identical to the LTI counterpart,
but calculated at each harmonic frequency ωr.

The LTP block TLTP represents the ABCD parameters of the shunt varactor, which is modelled by a
shunt time periodic admittance ~Ysh ¼ ðZse þ ~Y

�1Þ�1 ¼ ~Yðeþ Zse~YÞ�1. The second term in the last
expression is the inverse of a tridiagonal matrix and can be computed using closed-form expressions
as in [37].
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The speed of modulation n̂ is determined from the phase ϕ of ~C1, where

n̂ ¼ 2pfmp
Dn
Df

����
����,

which is expected to slightly deviate from the TL LTI speed. For a given modulation frequency fm and
strength M, the dispersion relation can be determined from the solution of (3.3). Figure 13 depicts the
dispersion relation for fm ¼ 1GHz, and when the modulation propagates in forward (figure 13a) and
backward (figure 13b) directions. As shown, n̂ is very close to the LTI speed, suggesting that the LTP
system is in the sonic regime [21,38].

To explore the interaction between the different modes and how they contribute to the overall
propagation, consider the situation where the modulation and signal are co-directional. Using 14
modes, the eigenvectors are calculated as reported in figure 14b. The TL is excited with a sinusoidal
signal of frequency f ¼ 2:82GHz. As will be shown later, at this frequency, maximum non-reciprocity
is observed. The plot shows the magnitude of the components of each eigenvector normalized to its
maximum value. Modes of interest are the ones that strongly couple with the input excitation; hence
they have significant components at ω (or the 0th harmonic as highlighted in figure 14b) and can
potentially be excited. Additionally, the BVP (4.3) is invoked to compute the different ak values that in
turn determine the strength of the excited modes as figure 14d shows. The waveforms at different
frequencies are the superposition of the corresponding eigenvectors as presented in figure 14c and
confirmed with SSM in figure 14a. Furthermore, figure 14e demonstrates that the waveforms can be
approximated by the dominant eigenmodes (i.e. the ones that couple with the input excitation such
that their expansion coefficients ak are non-vanishing). The signal at ω is significantly reduced at the
output due to the interaction with its harmonics, mainly the −1 harmonic. The absence of bandgaps
in the dispersion plots in figure 13 suggests that this type of interaction is passive in nature (i.e. β is
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imaginary) [39]. Such an implication can be demonstrated by plotting β in the complex plane as in
figure 15a. Note that the excited modes, as witnessed by the values of |ak| in figure 14d, have imaginary
propagation constants. Additionally, an SSM computation of the same TL, but with an N = 100 unit cell is
performed and the results are reported in figure 15b. Up to the 20th cell, the wave behaviour and
interaction between harmonics resemble that of an N = 20 unit cells shown in figure 14a,c,e, where energy
is mainly transferred from the fundamental to its −1 harmonic. Nevertheless, for the subsequent stages,
up to the 60th cell, energy is pumped back to the fundamental and the amplitude of the fundamental
harmonic increases; a typical behaviour of a passive interaction.
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The strong interaction between the fundamental and its −1 harmonic is apparent from the measured
output spectrum (figure 14f ). Here, the input port was fed by an RF source that was swept over a
frequency range around 2.82 GHz and the output of the spectrum was measured by a spectrum
analyzer. The spectrum shows that once the modulation is turned on, the interaction is mainly with
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the −1 harmonic. Note that modulation and its higher harmonics (1, 2 and 3 GHz) appear as spikes in the
measured spectrum.

When the modulation and signal are contra-directional, as figure 16a demonstrates, the eigenvalues
are generally different from those calculated above. The dispersion relation shows an increase in the
separation between the forward branches as in figure 16c. Hence, the incident wave is expected to
strongly couple to the main branch, labelled by the mode number 14. Note that other higher modes,
for instance mode 15, are wrapped back to the negative side once βp exceeds π. It is worth noting
from the computed eigenvectors (figure 16d ) that the 9th and 10th modes have a significant
component at the 0th harmonic. However, due to the increased separation between the branches in
the forward direction such modes are not excited. Therefore, one may conclude that when the signal
and modulation are contra-directional the propagation is basically that of the LTI system. Indeed, the
calculated ak coefficients (figure 16b) show that coupling is mainly with the 14th mode. Therefore, the
mode couples with the forward main branch and the structure appears to be transparent in this mode
of operation.
5.2.2. Transmission coefficient

Finally, the modes are superimposed and the transmission coefficient is calculated for both the co- and
contra-directional modes of operations. The transmission coefficient at the fundamental frequency is
calculated using SSM and the process is repeated over the 0–4 GHz range. Figure 17 shows that as a
consequence of space–time modulation and the asymmetric interaction between harmonics in the
forward and backward directions, strong non-reciprocity between the forward and backward
propagation arises. As has been shown, this is due to the passive interaction between the fundamental
mode and its lower harmonic when the modulation and signal are co-directional. For an input
frequency of 2.82 GHz, the coherent length is 20 unit cells long. Hence, maximum energy is
transferred to the −1th harmonic, reducing the signal at the output port. In the opposite direction,
however, the distances between the forward branches are widened and the effect of modulation is
negligible. Figure 17c,f reveals that such non-reciprocal behaviour demonstrates itself in the measured
scattering parameters. The baseline, however, is reduced by approximately 30 dB due to the presence
of the directional coupler.
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6. Conclusion
The time periodic circuit theory was exploited to derive some of the properties of the infinite-dimensional
spatial translation operator of space–time modulated circuits. The modal behaviour of a generic space–
time periodic structure can be explained from the solution of the system eigenvalue problem.
Additionally, we showed that the translation operator guarantees that solutions are invariant under
spatial translation. Furthermore, it was shown that all points in the (β, ω) plane parallel to the
modulation velocity n̂ are equivalent in the sense that the eigenvectors are related by a shift operator.
The waveforms inside the space–time periodic circuit and the time periodic scattering parameters
were determined through the expansion of the total solution in terms of the eigenmodes, and after
imposing the suitable boundary conditions. Two examples were discussed. In the first, a space–time
modulated CRLH TL was studied using the developed approach and compared with time domain
simulation. In the second example, the non-reciprocal behaviour observed on a nonlinear TL was
explained. This was made possible via the extraction of circuit parameters from measurements that
were then used to predict the wave behaviour inside the TL and its effect on the terminal properties.
It was shown that the passive interaction between different harmonics resulted in an observed non-
reciprocal behaviour, where the difference between forward and backward transmission coefficients
S21− S12 can be significant. The frequencies at which non-reciprocity occurred and its strength agree
with time domain simulation and measurements.
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