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ABSTRACT

Wireless power transfer via a dielectric loaded multimoded split cavity resonator (SCR) is proposed in this article. Unlike conventional
inductive resonant coupling, the scheme enables the control of both the real and imaginary parts of the transfer impedance. It is demon-
strated through measurements, analytical models, and extensive full-wave simulation that the inclusion of dielectric resonators (DRs) tuned
to the SCR TE012 mode significantly enhances the system figure of merit, optimal efficiency, and maximum power transferred to the load.
The effect of the DRs is shown to be related to the resonant coupling of the DR TE01δ and SCR modes, resulting in an electromagnetic
induced transparencylike window. An efficiency of 70% is achieved when the transfer distance is 7 cm or half wavelength. Additionally, it
was shown that the efficiency is above 40% over a relatively wide bandwidth and a wide range of optimum load impedance. A circuit model
is developed that enables the decomposition of the two port network parameters into their modal contributions. Hence, it allows the
comparison with conventional inductive resonant coupling systems on the fundamental level. Additionally, a vector fitting based method is
proposed to calculate the circuit parameters from the measured scattering parameters.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5129280

I. INTRODUCTION

Wireless Power Transfer (WPT) has gained immense interest
in the last decade due to its vast potential applications in existing
and emerging domains such as in powering appliances, gadgets,
electric vehicles, and Internet. Resonant inductive (or capacitive)
coupling provides a promising means of WPT due to its high
efficiency over midrange distances.1,2

Resonant coupling methods rely on the mutual coupling
between relatively high Q resonators. The strength of coupling can
be quantified via the unitless coupling coefficient κ. In terms of
circuit elements, κ is directly proportional to the mutual coupling
M between different resonators. For a general electromagnetic reso-
nator, it is the net overlap of electromagnetic fields of resonant
modes.3 To reduce unnecessary intrinsic losses, it is desirable to
maximize the source and receiver intrinsic Q factors. Due to their
very high Q values, the modes of Dielectric Resonators (DRs)
have been exploited to transfer power efficiently over short- and

mid-range distances.4–6 The performance of resonant coupled
schemes correlates directly with the product κQ, which represents
the system figure of merit (FOM).

On the other hand, the modes of cavity resonators were
exploited to transfer power within an enclosure.7–9 This approach
allows power to be transferred to almost any point in a 3D region.
By capacitively loading a rectangular cavity, quasistatic modes can
be supported, where the electric field is localized inside the capaci-
tor’s banks and, therefore, health hazards are minimized.10

A moderately high ϵr DR placed inside a conducting cavity
was shown to strongly interact with the cavity modes.11 Placing two
DRs that are practically uncoupled from one another creates an
electromagnetic induced transparency-like (EIT-like) window.
Through this window, it was theoretically shown that efficient
power transmission can be made possible.12 Additionally, a split
cavity resonator (SCR) was used instead of the fully cavity, and it
was shown that, via the EIT-like pathway, high efficient WPT is
still feasible.
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In the current manuscript, we experimentally demonstrate that
an SCR loaded with two DRs (DR2SCR) provides efficient WPT.
The SCR and DR’s dimensions are chosen such that the DR TE01δ
and SCR TE012 modes have the same resonant frequency. Depending
on the coupling of the input power to the SCR in the vicinity of the
TE012 resonance, several modes can be excited, resulting in a multi-
moded structure. Therefore, the structure can be regarded as a plat-
form that enables the exploration of the contribution of multiple
modes, or pathways, to the delivered power. Hence, to describe the
system behavior and interpret the experimental results, a framework
based on a combination of electromagnetic analysis and network
theory is applied. Particularly, the network theory allows the decom-
position of the terminal parameters into their modal constituents.
Additionally as a first order approximation, Coupled Mode Theory
(CMT) and circuit modeling are applied to describe the interaction
between the SCR TE012 and DR TE01δ modes.12

Section II describes the network theory approach to WPT
systems and highlights the relevant electrical parameters. It will be
shown that the framework permits the abstraction of the FOM and
expresses it in terms of generic circuit parameters that are valid
for arbitrary WPT systems. Furthermore, the electromagnetic modes
are represented by a modal equivalent circuit, and the procedure for
calculating the ciruit parameters is outlined in detail. The geometry
and dimensions of the SCR and DR2SCR structures are presented in
Sec. III. Backed by full-wave simulations, the spatial disributions of
the electromagnetic (EM) modes are computed for the SCR and
DR2SCR schemes. Section IV presents experimental results, com-
pares to simulations, discusses the findings, and relates the behavior
to the circuit parameters and interactions of modes.

II. THEORETICAL BACKGROUND

As mentioned in Sec. I, coupled resonators enable WPT via
the possible electromagnetic coupling between them and their high
Q values. The FOM of a WPT system can be expressed as the
product κQ. From a circuit theory perspective, coupled resonators
can be modeled by a two port network, thus allowing the FOM to
be written in terms of circuit parameters as follows:

FOM ¼ jZ21jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11r22 � r221

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r221=r11r22 þ x221=r11r22

1� r221=r11r22

s
, (1)

where Zmn ¼ rmn þ jxmn is the (m, n) element of the Z matrix.13,14

The expression of FOM in (1) is an extended κQ expression that is
valid for an arbitrary two port network. Indeed, given a two port
network, its maximum efficiency ηmax is fully determined via FOM.
As was previously shown, if FOM is represented by the tangent
of an angle 2θ (i.e., FOM W tan 2θ), ηmax is precisely tan2 θ.15

Equation (1) reveals that the FOM depends on the relative magni-
tudes of the transfer components r21 and x21 with respect to the
product of self-resistor values r11 and r22. Accordingly, (1) can be
conveniently rewritten as

FOM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2n þ x2n
1� r2n

s
, (2)

where rn W r21=
ffiffiffiffiffiffiffiffiffiffiffi
r11r22

p
and xn W jx21j= ffiffiffiffiffiffiffiffiffiffiffi

r11r22
p

. Therefore, the
FOM can be enhanced by increasing rn and/or xn.

The circuit in Fig. 1(a) represents the model of a generic
system of two inductively coupled resonators. Assuming that the
resonant frequencies of both resonators are equal to ω0, Z21 ¼ ix21.
Neglecting the source resistance Rs, which is usually small, the
FOM reduces to x21=

ffiffiffiffiffiffiffiffiffiffiffi
r11r22

p ¼ ω0M=
ffiffiffiffiffiffiffiffiffiffi
R1R2

p
. Hence, to improve

the FOM, one strives to maximize the value of xn, which can be
achieved via (1) the increase of the mutual coupling (moving the
resonators closer, better design of the coils to increase the flux
linkage, or the use of metamaterials or near field plates to focus the
magnetic field inside the receiver coil.16–20) and (2) reduction of
the self-resistors rii or, in another words, the increase of the resona-
tor’s Q factors. It is worth noting that the absence of rn is intrinsic
to the scheme shown in Fig. 1(a). If a relay resonator is inserted
between the transmitter and the receiver as shown in Fig. 1(b),
Z21 becomes real at resonance. Therefore, the FOM is enhanced
by simultaneously increasing the numerator and reducing the
denominator of (2). It is worth to note that, in the midfield regime,
where the separation distance between the source and the load is
comparable to the wavelength, power is transferred via inductive
and radiative modes, resulting in a complex Z21. The optimum fre-
quency of WPT schemes in human tissues was obtained through
the maximization of a figure of merit parameter that mainly
depends on jZ21j.21

It is worth to briefly illustrate how optimal conditions are cal-
culated from the two port representation. For a detailed discussion
and derivations, the reader can refer to Refs. 13–15 and 22. As a
first step, the network is represented via its Z parameters, which
provide a convenient means for expressing the system efficiency η
in terms of the two port parameters and load impedance.
Accordingly, η assumes the form

η ¼ ReZL

ReZin

Z12

Z22 þ ZL

2����
����, (3)

where Zin ¼ Z11 � Z2
12=(Z22 þ ZL) is the input impedance.

The above expression is valid for an arbitrary load impedance ZL.
To find the optimal efficiency for the given network (Z is fixed),
the derivative of the efficiency with respect to the load impedance
ZL is set to zero and the optimal load is determined. In general,
the optimal load is complex and takes the form

XL ¼ r22θx � x22 (4)

and

RL ¼ r22θr , (5)

where r22 and x22 are the real and imaginary parts of Z22,
θr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2n

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2n

p
, and θx ¼ rnxn. Additionally, it can be

shown that, still under the maximum efficiency condition, the
power delivered to the load can be maximized whenever the
network parameters satisfy

x11
x12

¼ r12
r22

: (6)
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An arbitrary network does not necessarily satisfy (6). However by
inserting a series reactive element Xc to x11 or the input port
[refer to Fig. 1(c)], condition (6) can be met. The reactive element
acts like a compensator (and hence the c subscript) that absorbs
no power, but it is necessary for maximizing the power delivered
to the network and load.

On the other hand, if one is interested in maximizing the
power transfer to the load rather than maximizing the efficiency,
similar steps can be taken to calculate the optimal load and the cor-
responding efficiency. The optimum load in this case, however, can
be determined by invoking the maximum power transfer theorem
to show that the optimum load is equal to the conjugate of the
impedance of the two port network seen from the load terminal. It
is important to point out that the condition of maximum efficiency
does not imply maximum power transferred to the load or vice
versa. In fact, as will be seen later in Sec. IV, for a given input avail-
able power the higher the efficiency is, the less the power trans-
ferred to the load.

The interaction between the resonators is usually studied
using CMT.2,23–25 From a CMT point of view, the insertion of a
relay coil between the source and the receiver improves the FOM
via the introduction of a nonbonding (dark) mode that enables
EIT-like transmission.12,26 Therefore, a circuit model that directly
exposes the modal behavior and at the same time preserves the
same two port parameters is quite valuable. Not only does it

support the understanding of the system behavior, it also serves as
a unified framework that can be used to compare the performance
of multimoded systems with the convenient inductive resonant
coupling schemes.

Figure 2 represents the circuit model of a generic resonator.27

By a resonator, here, we mean a generic system that exhibits reso-
nant modes resulting from the solution of Helmholtz’s wave
equation subjected to suitable boundary conditions. For instance,
it can be considered a microwave cavity or a collection of lumped
LC circuits, or a combination of both. The excitation is coupled
to the resonators’ modes via a loop, which is modeled by a series
resistor and inductor, Rs and Ls. The mutual inductances Mk rep-
resent the mutual coupling between the excitation and the kth
mode, which is generally determined by the overlap of the source
with the mode field’s profile. When a given mode is excited, its
magnetic field intercepts the loop connected to the load. Each res-
onant mode is represented by an RLC circuit, and the coupling to
the load is modeled by a mutual inductance +Mk, where the sign
depends on the symmetrical nature of the mode. From an
input-output perspective, the circuit can be treated as a two port
network where

Z11 ¼ Z22 ¼ Rs þ iωLs þ
XN
k¼1

ω2M2
k

Zk
(7)

FIG. 1. (a) A circuit model of inductively coupled resonators used in WPT systems. (b) A three inductively coupled resonators. (c) A T representation of a generic two port
network with the compensation reactance Xc connected.
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and

Z21 ¼ Z12 ¼
XN
k¼1

(�1) pk
ω2M2

k

Zk
, (8)

where Zk W Rk þ iωLk � i=ωCk, N is the number of excited modes,
and pk ¼ 0 (pk ¼ 1) when the mode fields have an even (odd)
symmetry around the symmetry plane. Equations (7) and (8) express
Z11 and Z21 as the net effect of all excited modes. Furthermore, the
symmetry of a mode can be identified via the sign of r21 in the
vicinity of the mode resonant frequency.

It may appear that inductive resonant coupling systems that
are usually represented by the circuits in Figs. 1(a) and 1(b) are
different in nature from the resonator circuit shown in Fig. 2.
Nonetheless, it can be easily shown that for identical and/or high Q
resonators, Figs. 1(a) and 1(b) reduce to the modal circuits pre-
sented in Figs. 3(a) and 3(b), respectively. For convenience, we
assume that the two resonant coils appearing in Fig. 1(a) are identi-
cal (i.e., R2 ¼ R1 ¼ R, L2 ¼ L1 ¼ L, C2 ¼ C1 ¼ C). Figure 3(a) pre-
sents the energy transfer mechanism from the source to the load
via the resonant modes: symmetric and antisymmetric, which can
be visualized as two parallel pathways that connect the source to
the load. The two modes couple identically with the source
(M1 ¼ M2) and oppositely with the load, due to the different sym-
metry of both modes. When ω ¼ ω0 ¼ 1=

ffiffiffiffiffiffi
LC

p
, rn ¼ 0 and the

FOM depends on xn only.
On the other hand, the insertion of a relay coil, as shown

in Fig. 1(b), results in three coupled modes: bonding

ωb W 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Lþ ffiffiffi

2
p

M)C
p� �

, nonbonding ωn W 1=
ffiffiffiffiffiffi
LC

p� �
, and anti-

bonding ωa W 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(L� ffiffiffi

2
p

M)C
p� �

. Interestingly, the mutual cou-

pling of the nonbonding with the source is twice that of any of the
other two modes. The nonbonding mode allows an electromagnetic
induced transparencylike mechanism to transfer energy between a

transmitter and a receiver.12,26 The bonding and antibonding
modes are analogous to the symmetric and antisymmetric modes
of a two inductively coupled resonant system, respectively.

A. Identification of modes dynamics

Measurements are often made in the frequency domain,
where the scattering parameters at the reference planes are mea-
sured by a Vector Network Analyzer (VNA). For the circuit in
Fig. 2, measurements represent the scattering parameters of the full
two port between the source and the load (neglecting the attached
connectors). The scattering parameters can be converted into any
other set of network parameter. For instance, they can be converted
to the Z parameters, which provide a convenient representation.
The measured two port network parameters, however, represent
the net effect of the structure as seen at the terminals. For the reso-
nator modal circuit (Fig. 2), it is desirable, as has been previously
mentioned, to decompose (unfold) the net effect into the modal
constituents.

From a circuit modeling perspective, a resonant mode m is
characterized by its resonant frequency ω0m and Q factor Qm.
To fully describe the multimoded resonator in Fig. 2, the resonant
frequencies ω0m, Qm, mutual inductances Mm, and modal polarities
pm must be extracted from the measured data. The modal parameters
can be easily extracted if only one mode is excited such that the effect
of other modes is usually small. If the higher order modes cannot be
ignored, their collective effect in the vicinity of the given mode is gen-
erally complex in nature. Traditionally, the effect has been modeled
by a reactance X(ω) that is approximated by the first two terms of
the Taylor series [i.e., X(ω) � X(ω0)þ X1(ω0)(ω� ω0), where
X1(ω0) W @X=@ωjω¼ω0

]. Taking X(ω) into account, the mode res-
onant frequency and the unloaded Q can be obtained from the
measured scattering parameters.28,29 For the multi-moded cavity
case, however, the modes are very close to one another such that
in the vicinity of a given mode, the effect of other nearby modes

FIG. 2. A circuit representation of the excitation of a general symmetric resonator. Ls and Rs represent the equivalent lumped of the feeding inductive loop. Mi is the cou-
pling of the input power to the ith mode. Depending on the mode symmetry, the mode couples with a load network via an equivalent mutual coupling +Mi .
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can widely vary and more terms in the Taylor series need to
be retained. Additionally for an accurate construction of the
circuit representation (7) and (8), the identification process
must be repeated for all excited modes. To overcome the chal-
lenges of the traditional identification approach, we apply a
different identification procedure that relies on fitting the fre-
quency domain Z21 to a rational function such that, in the vicin-
ity of a given mode frequency, it behaves much like (8). It is
worth noting that such an approach has been previously applied
to extract resonators’ parameters used for microwave filtering
applications.30,31

The measured Z21 frequency domain data are fitted to a ratio-
nal function Ẑ21 using the Vector Fitting (VF) method,32

Ẑ21(s) ¼
XN
k¼1

Cksþ Dk

s2 þ ω̂0ks=Q̂k þ ω̂2
0k

, (9)

where ω̂0k and Q̂k are the identified resonant frequency and Q
factor of the kth pole, respectively. Each rational function in the
above expression results from the combination of a simple first
order rational function of the form Ak=(s� pk) with its complex
conjugate A*

k=(s� p*k). From a fixed mth resonant mode

perspective, Ẑ21 can be rewritten as

Ẑ21(ω) ¼ F̂(ω)þ iCmωþ Dm

�ω2 þ iω̂0mω=Q̂m þ ω̂2
0m

, (10)

where

F̂(ω) W
X
k=m

iCkωþ Dk

�ω2 þ iω̂0kω=Q̂k þ ω̂2
0k

: (11)

In the vicinity of ω̂0m (i.e., δ W ω� ω̂0m such that jδj � ω̂0m), both
the numerator n(δ) and denominator d(δ) of the second term in
(10) become first order in δ. In another words, (10) is approxi-
mated to

Ẑ21 � F̂0(ω)þ Âm

δ 2ω̂0m � iω̂0m=Q̂m
� 	� iω̂2

0m=Q̂m
: (12)

The exact expressions of F̂0(ω) and Âm are readily obtained
from (10) after the substitution ω ¼ ω̂0m þ δ is made and noting
that n(δ)=d(δ) ¼ kþ r=d(δ), where k is a constant. Finally, k is
absorbed in F̂0(ω) [i.e., F̂0(ω) ¼ F̂(ω)þ k]. When Q̂m � 1, the

FIG. 3. A modal equivalent circuit of (a) the inductive resonant coupling WPT shown in Fig. 1(a). (b) The three coupled resonators of Fig. 1(b).
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behavior is dominated by the denominator of the second term
in (12).

Now, we show that the circuit model given by (7) and (8)
reduces to (12) at the vicinity of the mth mode. To prove this, it
should be observed that Z21 can be written as

Z21(ω) ¼ F(ω)� (�1) pm iω3M2
m=Lm

ω2 � iωω0m=Q0m þ ω2
0m

: (13)

In the vicinity of ω0m and after neglecting higher order terms of δ,
(13) reduces to

Z21(ω) � F0(ω)þ Am

δ 2ω0m � iω0m=Qm½ � � iω2
0m=Qm

: (14)

Equations (12) and (13) take the same form. For a large Qm value
and whenever the frequencies of the other modes are outside the
mth mode bandwidth, F0(ω) and F̂0(ω) are relatively slow varying
functions of frequency. Hence, the behavior is mainly determined
by the second term (fast varying in the vicinity of ω0m ). Therefore,
whenever VF correctly estimates the value of the resonant fre-
quency (ω0m), the identical forms of the expressions (13) and (12)
imply that the unloaded Q of the mth mode (Qm) is Q̂m.

B. Identification of the total response

As discussed in Subsection II A, the resonant frequencies and
the unloaded Q of the different modes are identified using VF.
To determine the general behavior, it is also essential to calculate
the strength of the coupling of each mode to the source (Mk). This
can be achieved by defining

ψk(ω) W
iω3

�ω2 þ ωω0k=Qk þ ω2
0k

: (15)

Hence, Z21 can be written as a linear superposition of ψk,

Z21 ¼
XN
k¼1

akψk(ω), (16)

where ak W ζMk(� 1) pk and ζ W Mk=Lk is a coupling coefficient
term. The basis functions ψk are complex [ψk(ω) ¼ Reψk þ iImψk];
therefore, we determine the coefficients ak by expanding r21 in the
real part of ψk and applying the least mean square fitting method.
Once the coefficients ak are determined, the imaginary part of ψk
can be used to validate the accuracy of the circuit model in Fig. 2.
In another words, ak values are determined from the fitting of the
measured r21 to

PN
k¼1 akReψk(ω). For the model (2) to be accurate,

x21 should be equal to
PN

k¼1 akImψk(ω).

III. SCR AND DR2SCR CONFIGURATIONS AND MODES

For a complete description of the system, we identify the excited
3D EM modes via full-wave simulation. Such analysis provides a
deep insight that guides the understanding of the DRs/SCR interac-
tions, particularly, when EIT-like transfer becomes observable.

An SCR consists of two separate conducting cylindrical halves
as shown in Fig. 4. Unlike coupled resonators, both halves need to
be present to sustain the resonant modes. In other words, the modes
are due to the SCR as a whole and are not considered to result from
the interaction of the two separate subsystems. The exact excited
modes depend on the system geometry, dimensions, the excitation,
and how it couples to the mode’s profiles. The rather complicated set
of modes allows Z21 to be complex.

In the limit where the distance between the two halves d ! 0,
the structure forms a cylindrical cavity. Hence, the SCR modes can
be visualized as perturbed cylindrical cavity modes. The flanges
extending in the lateral direction form a radial two parallel plate
waveguide. As long as the distance d is smaller than the cut-off
frequency of the waveguide, the fields of the resonant modes are
evanescent and stay localized inside the structure. The waveguide
has a TE10 dominant mode with a cut-off frequency fcut ¼ c=2d.
The purpose of the flange is to reduce the EM leakage through the
gap. As long as the field profile across the gap is below the mode
cut-off frequency, the radial propagation constant is imaginary
(i.e., the wave is evanescent). The longer the flange, the less the
field’s magnitude at the flange edges and the less the radiation from
the structure. This is due to the fact the fields exponentially decay
in the radial direction. In Ref. 12, it was shown that the flange
length can be reduced with no significant effect on performance.

The source is fed via a coaxial probe from one end, where
it inductively couples the input power to the SCR modes via a
coupling loop. Two DRs can be inserted in the SCR. Due to the

FIG. 4. The split cavity resonator with the dielectric resonators. Dimensions:
dSCR ¼ 18:7 cm, hSCR ¼ 8:2 cm, d ¼ 7 cm, lflange ¼ 10 cm, hDR ¼ 1:4 cm, and
dDR ¼ 2:5 cm. The DRs are placed at a distance of 1.7 cm from the SCR flat
surfaces.
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interaction of the DRs and SCR modes, efficient power transfer can
be achieved as was theoretically demonstrated in Ref. 12 and shown
below via simulations and measurements. The excited modes inter-
cept the receiving coil, which pumps energy to the load connected
to the output coaxial cable.

Generally speaking, at any given frequency, the fields inside
the SCR (and DRs, when present) are the superposition of the
excited modes. As the input frequency approaches the frequency
of a particular mode (or pole), the fields of that given mode
become dominant, provided it is efficiently coupled to the excita-
tion loops and the frequencies of other modes are sufficiently far.
The exact full-wave analysis can be quite complex. Fortunately for
our purpose, a gray box model is sufficient for determining the
system behavior. Furthermore, the modal circuit discussed in
Sec. II, along with the procedure of calculating the contribution
of each mode to the terminal parameters, enables a scalar analysis
of the modal behavior.

A. Empty split cavity resonator

The SCR, shown in Fig. 4, is simulated using HFSS (Ansys®,
Electromagnetic Suite, 2016). The dimensions are given in the
figure. The structure is excited via an ideal coaxial cable that is
connected to a current loop. The current loop enables TE0mn

modes to be efficiently excited; however, other modes can couple to
the source as well. Figure 5(a) presents the magnitude of the simu-
lated S11 and S21 parameters. The dips in S11 represent the excited
modes as highlighted in the figure. Inspecting the field profile of
the second mode reveals that it is an hybird mode. The fourth
mode is a TE012 mode with a frequency fTE012 ¼ 2:34GHz. This
mode has a very high Q; in fact, the eigenmode solution redicts its
Q � 10 000. Due to its extremely narrow bandwidth, exciting this
mode may be challenging. Nevertheless, the TE012 mode strongly
couples with DR TE01δ modes, as will be shown in Sec. III B. In the
axial direction, the fields have two nulls [hence the mode is
described by two half wavelengths in the axial direction, Fig. 5(b)].
When d ¼ 7 cm, fcut ¼ 2:143GHz. Although fTE012 . fcut, the
fields of the TE012 do not propagate through the radial waveguide
since its field profile does not match the waveguide TE10 mode
profile. However, if the flange is excessively short, the resonant
modes will have lower Q values due to the added radiative losses.
To be more specific, TE20 is the relevant waveguide mode,
which has a cut-off frequency of fcut ¼ c=d � 4:3GHz. Therefore,
the mode is evancescent with an attenuation constant of
kr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z � k20

p ¼ 75:7m�1. For a 10 cm flange (the one used here),
the field decays by more than 65 dB from its value at the SCR inner
radius. Reducing the flange length to 5 cm results in a decay of
approx. 32 dB. Therefore, the flange length can be reduced to 5 cm
(or even 3 cm) with no significant effect on performance. (For a
parametric analysis on the effects of the flange length, disturbances
due to the presence of dielectric objects and changes in dimensions,
the reader may refer to Refs. 33 and 34.)

The separation distance d affects the frequency and Q factor of
the SCR resonant modes. The larger the d is, the lower the resonant
frequency and Q are (due to the increased radiation from the gap).
When d is slightly perturbed around its nominal value, the circuit
parameters and η will slightly change. However, as the change in d

becomes larger, the mode’s constituents may change. For instance,
for smaller d values, some higher order modes will be pushed
further up in frequency and hence gets barely excited. On the other
hand, for larger d values, the frequencies of higher order modes
reduce and may become close to the excitation frequency.
For extremely large values of d (i.e., d � dcut�off ), the SCR modes
will become radiative with very low Q values. This means that the
different modes will overlap and modal picture will be blurred.
At the vicinity of the DR TE01δ modes, the nonbonding mode
permits the system to tolerate changes in the dimensions. This is
because the nonbonding mode does not depend on the SCR
modes. (For an elaborate discussion on the permissible magnitude
of detuning, please refer to Ref. 33.)

In general, the input power of a general two port network is
given by

Pin ¼ ja1j2 � jb1j2, (17)

where a1 and b1 are the amplitude of the incident and reflected
waves, respectively. The output power is similarly given by

Pout ¼ jb2j2 � ja2j2 (18)

for a matched load (i.e., terminated with a 50Ω impedance),
a2 ¼ 0 and Pin becomes ja1j2 1� jS11j2

� �
. Therefore, the efficiency

η for this particular load becomes

η50Ω W
Pout
Pin

¼ jb2j2
ja1j2 1� jS11j2

� � ¼ jS21j2
1� jS11j2

, (19)

where by definition S21 W b2=a1 and S11 W b1=a1, when a2 ¼ 0.
It is important to note, however, that the efficiency given

by (19) is not the maximum efficiency of the system; it is merely
the efficiency when the load is fixed to 50Ω.

B. SCR with dielectric resonators

Two DRs of ϵr ¼ 25 and tan δ ¼ 0:002 (Q ¼ 500) are inserted
in the SCR. They are supported by a low loss/low ϵr foam and
placed close to the coupling loops to enable the excitation of their
TE01δ modes. The DR dimensions were chosen such that the TE01δ
mode has a resonance frequency of �2:3GHz and, therefore, can
strongly couple with the SCR TE012 mode. Figure 6 shows the
simulated results compared to the case when the SCR was empty.
Due to the high ϵr value, the SCR frequencies between 2 and
2.2 GHz are shifted down. At the vicinity of 2:3GHz, three modes
are clearly visible in the spectrum. The SCR TE012 and two DR
TE01δ interact, resulting in three coupled modes.12,35 Very close to
the TE012 frequency appears the nonbonding mode, which does not
have an SCR component. Q of the nonbonding mode is lower than
that of the TE012 mode, resulting in a wider bandwidth in jS11j and
jS21j. The bonding (antibonding) mode is formed at a frequency
lower (higher) than the nonbonding mode.

The coupling between the modes results in a significant
change in the field’s profile. Figure 6(c) shows the magnetic field
profile at the nonbonding frequency. The magnetic field Hz along
the axial direction verifies that the fields are solely due to the DR
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modes with no sinusoidal components coming from the SCR
modes. Similar behavior was previously observed and studied using
CMT, when the DRs interacted with the SCR TE011 mode.12

IV. MEASUREMENTS

The system shown in Fig. 4 is fabricated from a low profile mate-
rial. The DRs are cut from a 1 in. cylindrical rod of ϵr ¼ 25+ 10%
and tan δ , 0:002 (Eccostock® HIK500F). The DRs are supported in
place via a low ϵr foam, not shown in the figure. Coupling to the

energy source and the load is provided via miniature loops, centered
with the DRs to excite the TE01δ modes.

The measured S11 and S21, with the separation distance
d ¼ 7 cm, are reported in Fig. 7. The dips in S11 represent the
excited modes. There is a good correlation between measurement
and simulation. Discrepancies between measurements and simula-
tions are attributed to the following. First, a realistic model of
the SMA connectors was not taken into account. The mismatch
and delay of the connectors introduce a slight shift in the scattering
parameters. Second, measurements show that S11 and S22 are slightly

FIG. 5. (a) Simulated S parameters of the SCR when dis-
placed 7 cm apart. (1)–(4) denote the positions of the res-
onant modes. (1): TM111 at f ¼ 2:081GHz, (2): HEM111
at f ¼ 2:145 GHz, (3): TM112 at f ¼ 2:28 GHz, and (4):
TE012 at f ¼ 2:34GHz. (b) Simulated magnetic field
along the axial axis Hz of the TE012 mode.
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different due to the tolerances in fabricating and aligning the two
SCR halves. Furthermore, the tolerance in ϵr of the DRs adds to the
uncertainity, where the TE01δ frequency can be of any value between
2.2 and 2.42 GHz, with a nominal value of 2.3 GHz. The exact value
of ϵr also affects the strength of coupling with the SCR TE012 mode.
This, in turn, is reflected in how fb and fa are positioned with respect
to fn.

For the SCR measurement, the dip of the TE012 was missed
from S11 during the VNA frequency sweep cycle. This is due to the
very high Q value of the mode, emphasizing the difficulty of relying
on the mode for WPT, regardless of its high Q value. However,
more desirable effects can be harnessed when the DRs are included;
as shown in Figs. 7(c) and 7(d). Indeed, in the DR2SCR

configuration, the interaction of the DRs with the SCR is clearly
observed in the measured spectra. The interaction was previously
studied when the DR modes were tuned to the SCR TE011 mode. In
the current situation, the interaction is more complex. As a first
order description, it can be approximated by the coupling of three
modes. However, the presence of other modes inevitably contrib-
utes to the net response. Additionally, the mismatch between the
two SCR halves will result in asymmetric modes, unlike the ones
depicted in Figs. 5 and 6.

To overcome the above challenges, we adopt the use of the
modal circuit introduced in Sec. II. Hereafter, if not explicitly men-
tioned, the focus will be on the DR2SCR system. Vector fitting
is used to fit Z21 to a rational function as described in Sec. II.

FIG. 6. (a) and (b) Simulated S parameters of the
DR2SCR when displaced 7 cm apart and compared to
the simulated S parameters of the SCR only. fb ¼
2:27 GHz is the bonding mode, fn ¼ 2:336 GHz nonbond-
ing mode, and fa ¼ 2:448GHz is the antibonding mode
resulting from the interaction between the DR TE01δ
modes and the SCR TE012 mode. (c) Simulated magnetic
field of the nonbonding mode inside the SCR and along
the axis of symmetry. The gray boxes surrounding the
DRs represent low loss low dielectric constant foams that
hold the DRs in place.
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FIG. 7. Measurement vs simulation
results when the two SCR halves are
placed 7 cm apart. SCR (a) and (b)
S11 and S21, respectively. DR2SCR (c)
and (d) S11 and S21, respectively. The
exact positions of the bonding, non-
bonding, and antibonding modes are
highlighted in (c).

FIG. 8. (a) The real (top) and imagi-
nary (bottom) components of the mea-
sured Z21 fitted to a rational function
using VF. The imaginary part of the
poles (resonant frequencies ω̂0k ) is
also shown. (b) The quality factor of
the poles (Q̂m).
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The results are plotted in Fig. 8(a). The maximum error between
the measured data and the rational function does not exceed
�30 dB. The imaginary parts of the poles determined by VF are
highlighted. Generally speaking, there is no guarantee that the poles
correspond to the system natural frequencies. However, whenever
they do, the estimated Q’s correspond to the system Q’s as was
shown in Sec. II. To verify that the estimated poles do indeed corre-
spond to the natural frequencies, we use the fact that for high Q
modes, r11 attains its maxima at or sufficiently close to the natural
frequencies. Figure 9 presents the measured r11, where the estimated

natural frequencies ω̂0k are shown on the abscissa. It is clear that out
of 13 complex poles, two of them (highlighted by the dashed box)
appear not to represent physical system poles. Fortunately, this will
have a local impact only. As long as mode m is concerned, the effect
of other modes is encapsulated in the slow varying function F(ω)
and VF guarantees an accurate representation of it, regardless of the
fact that some poles may have not been correctly estimated.
Furthermore for frequencies below 2.5 GHz, two modes were not
detected, as highlighted by the two arrows in Fig. 9. It is clear that
the two modes have a narrow bandwidth and are very close to the
frequencies of other detected modes, and it can safely be assumed
that their effect will be absorbed in the calculation of the parameters
of the nearby modes. All other poles correspond to natural modes.
Hence, Qk ¼ Q̂k. Figure 8(b) presents Q̂k. At the low frequency end,
Q̂k are very small, therefore according to the discussion in Sec. II the
estimated parameters may not be very accuate in this frequency
regime. It is worth to mention here that the estimated Q of the
mode at around 1.9 GHz is significantly high. As shown in
Appendix B, this mode corresponds to an antiresonance, which
needs to be represented by a shunt resonator. Fortunately at the
frequency range around 2.3 GHz, the unaccurately estimated Q̂k

values and the antiresonance are considered local effects that are
absorbed in the F̂0(ω) term in (12).

Once the modal ωk and Qk values are estimated, least mean
square fitting is then used to find the complete r21 over the whole
frequency range. The behavior is depicted in Fig. 10(a). The ability
to fit the measured data to (8) over a relatively wide bandwidth
(1.5–3 GHz) implies that the circuit model in Fig. 2 accurately
captures the system dynamics. Additionally, the calculated ak
parameters were used to compute x21 from the imaginary part of
ψk as shown in Fig. 10(b). The excellent fit between the circuit
model and the measured data strengthens the belief in the validity
of the schematic in Fig. 2. In this case, there are N ¼ 13 different
modes that couple the source to the load.

FIG. 9. The measured r11 vs frequency with the fitted poles highlighted.

FIG. 10. Measured Z21 vs the modal
decomposition model given by (8). (a)
Real part of Z21, r21 and (b) Imaginary
part of Z21, x21.
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It is worth noting that although the circuit model relies on the
terminal characteristics, the modal decomposition of Eqs. (7) and (8)
allows the symmetrical nature of the modes to be determined as
exhibited by the sign of r21. Furthermore, the different RLC resona-
tors represent the coupled modes resulting from the interaction of
the DRs with the SCR modes. Noting that the DRs TE01δ and SCR
TE012 modes have approximately the same resonant frequencies,
their interaction can be approximated by the three coupled
system in Fig. 1(b) and its modal equivalent [Fig. 3(b)]. Due to
the odd symmetry of the TE012, it can be shown using CMT
(Appendixes A and B) that the nonbonding mode has an even
symmetry or equivalently r21 . 0. From Fig. 3(b), it is clear that at
the antibonding (bonding) frequency, r21 . 0 (r21 , 0) (the signs
of the mutual couplings of the nonbonding and the antibonding
are the same, opposite to that of the bonding mode). The response
of r21 in the vicinity of the TE012 mode is highlighted in Fig. 10(a)
by the dashed box.

The FOM is calculated from the Z parameters using (2) as
shown in Fig. 11. As Fig. 11 clearly shows, the FOM is significantly
enhanced when the DRs are inserted. As expected, it attains its
maximum value in the vicinity of the TE012 due to the interaction
of the TE012 mode with the DRs TE01δ modes. When the DRs are
inserted, the FOM at 1.9 GHz is basically zero, emphasizing the fact
that the mode is antiresonant. Moreover, Fig. 12 shows the contribu-
tion of rn and xn to the net FOM.

It is interesting to point out that for the SCR only case,
the magnitude of xn is roughly double that of rn. Both rn and xn
change rapidly near 2.3–2.4 GHz, possibly peaking at the TE012
mode. For the DR2SCR case, the situation becomes more interest-
ing. The magnitude of xn is roughly increased by threefolds due to
the modal interaction between the DRs and the SCR, which is reac-
tive in nature. Additionally, rn drops to values very close to �1 and
then starts to go up. This makes the denominator of (2) very small
and hence reinforce the increase in FOM. For this particular confi-
guration, however, the xn approaches zero as rn approaches �1.

Nevertheless, the net effect of rn and xn results in a peak of FOM in
the vicinity of the TE012 mode. The two degrees of freedom offered
by the possibility of controlling both rn and xn provide insights on
how to enhance the performance of WPT systems; this is to be
compared to inductive resonant coupling, where only one tunable
parameter xn is possible. The modal decomposition of Z21 and Z11

shows that the behavior of FOM in the vicinity of some mode m
is affected mainly by the mth mode and to a lesser extent by the
other modes as reflected by their resonant frequencies, Q and the
mutual coupling to both the source and the load. Therefore, by
the proper placement of the resonators’ modes, it is potentially
possible to maximize the FOM. This is equivalent to engineering
the parallel pathways in Fig. 2 in a way that allows the EM fields
to constructively add at the load. It is important to note, however,

FIG. 11. FOM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r2n þ x2n )=(1� r2n )

p
calculated from the measured Z param-

eters for the SCR only and DR2SCR, when d ¼ 7 cm.

FIG. 12. rn ¼ r21=
ffiffiffiffiffiffiffiffiffiffi
r11r22

p
and xn ¼ x21=

ffiffiffiffiffiffiffiffiffiffi
r11r22

p
calculated from measure-

ments. (a) SCR, 7 cm. (b) DR2SCR, 7 cm.
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that xn and rn are not fully independent and strongly depend on
the physical realizability of the network. For instance, x21 and r21
are always related by the Kramers-Kroning relations,36 hence
adding constraints that need to be taken into account during the
design process.

The efficiency is calculated for three different cases: (1) 50Ω
termination—the efficiency—calculated directly from the VNA
measurements, (2) the maximum efficiency, and (3) the efficiency
when the maximum power is absorbed by the load. As Fig. 13(a)
shows, the efficiency can widely change over the frequency range of
interest for the three cases. The maximum efficiency goes to around
0.7 in the vicinity of the TE012 mode. As was already discussed at the
frequency range, the mode’s behaviors are mainly due to the interac-
tion between the DRs and SCR TE012 modes. Therefore, it is
expected that if lower tan δ DRs are used, the efficiency can further
be improved. It is worth to note that at the antiresonance mode at
1.9 GHz, the efficiency is practically zero. Additionally, significant
losses are expected to be attributed to the low profile connector and
the foam supporting the DRs. Figure 13(b) demonstrates that the

FIG. 13. DR2SCR, 7 cm apart. (a)
Maximum efficiency, efficiency at max.
load power and efficiency determined
directly from VNA measurements (i.e.,
efficiency when load impedance
ZL ¼ 50Ω. (b) Real and imaginary
load values RLopt and XLopt, respec-
tively, at maximum efficiency and max
load power. (c) Value of series com-
pensator reactance Xc . The inset illus-
trates where the compensator element
is added to the two port network input
terminal.

FIG. 14. Maximum efficiency and power at maximum efficiency to maximum
power at load ratio.
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optimal load impedance for maximum efficiency and maximum
power transfer are generally not the same, in agreement with the the-
oretical predictions.13 The compensator reactive element required at
2.3 GHz is found to be �30Ω or equivalently an inductor of induc-
tance �2��3 nH.

As was previously shown based on the theoretical analysis of
two port networks, the efficiency at the maximum load power is
less than the maximum efficiency. Hence, to deliver more power to
the load (i.e., operating the source near its rating value), the
efficiency drops. Conversely at the maximum efficiency, the actual
power absorbed by the load is a fraction of the maximum power
that can be delivered. Figure 14 illustrates this inverse relation.
For instance, at around 2:3GHz, the power at maximum efficiency
Pe to the maximum power that can potentially be delivered to the
load Pp is � 0:05.

Finally, Fig. 15 shows the maximum efficiency of the DR2SCR
compared to the SCR. Regardless of the DRs added losses due to
their tan δ, the DRs have improved the performance, particularly
when they strongly interact with the SCR TE012 mode as was previ-
ously discussed. From a circuit theory point of view, the DR2SCR
configuration allows a simultaneous change of both the real and
imaginary parts of Z21, which, in turn, improves the FOM.

V. CONCLUSION

A wireless power transfer system based on the interaction of
DRs and a multimoded SCR has been proposed. Due to the complex-
ity of the structure, a circuit based approach has been employed to
study the system performance. It is shown that such a configuration,
unlike conventional inductive resonant coupling, offers the possi-
bility of controlling both the real and imaginary parts of the
transfer impedance Z21. This, in turn, has resulted in a significant
improvement of the system figure of merit and efficiency.
Furthermore, a modal circuit description is used for the first time
to decompose the terminal parameters to their modal

constituents. Hence, it reduces the task of manipulating Z21 to the
engineering of the different modes.

The multimoded SCR explored provides a platform to
examine the interaction of different modes and how they contribute
to the terminal transfer impedance Z21. It may find applications
where conducting surfaces naturally appear. One potential applica-
tion is charging electric vehicles via the exploitation of the already
existing conducting surfaces. The dimension of the SCR may be
reduced, for instance, by coating the surfaces with a dielectric
material or via the manipulation of the boundary conditions using
artificial materials (metamaterials) such as artificial magnetic con-
ductors.37 Additionally, the modal profile and field distribution
may be controlled via the manipulation of the effective permittivity
and permeability, for instance, by using epsilon and/or mu near
zero materials.38,39

APPENDIX A: NONBONDING MODE

The nonbonding mode resulting from the coupling between the
two DRs and the SCR modes is briefly presented here. Generally
speaking, the fields of the coupled modes can be expressed as the
linear combination of the DRs and SCR modes. Close to the
fTE012 � fTE01δ , the interaction is dominated by the DR TE01δ and
SCR TE012 modes. Hence, around fTE012, the field profile is mainly
determined by these three modes. The DR two modes will be labeled
“1” and “3”; and the SCR TE012 is denoted by “2” subscript.
Therefore, the analysis is identical to that in Ref. 12. It is worth
noting, however, that unlike Ref. 12, the interaction is antisymmetric
(i.e., κ12 ¼ �κ32 ¼ κ). Taking this into account, the eigenvalue
problem is written as

f 20 �f 20 κ 0
�f 20 κ f 20 f 20 κ
0 f 20 κ f 20

2
4

3
5 a1

a2
a3

2
4

3
5 ¼ f 2

a1
a2
a3

2
4

3
5, (A1)

where f0 is the resonant frequency of the TE012 mode, ai is the
expansion coefficient of the ith mode, and f is the to be deter-
mined coupled frequency. There are three eigenmodes for the
above equation: bonding, nonbonding, and antibonding. By inspec-
tion, it is readily found that f ¼ f0 satisfies the eigenvalue problem
with an eigenvector

an ¼ 1ffiffiffi
2

p
1
0
1

2
4

3
5, (A2)

which is the eigenvector of the nonbonding mode. The fields in both
DRs are in phase as shown in Fig. 6.

APPENDIX B: NATURE OF MODE AT THE FREQUENCY
OF THE SCR TE011 MODE

The sharp dip of the magnitude of S21 at the frequency of the
SCR TE011 mode [around 1.9 GHz in Fig. 7(d)] acts as a notch
filter that blocks transmission. Interestingly, the dip appears only
when the DRs are inserted, suggesting that it results from the cou-
pling of the DRs with the SCR TE011 mode. As was previously
shown, the coupling between two different modes is due to the

FIG. 15. Maximum attainable efficiency for SCR and DR2SCR when the sepa-
ration distance d ¼ 7 cm.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 126, 244902 (2019); doi: 10.1063/1.5129280 126, 244902-14

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


interaction of the sources of one mode with the fields of the other,
which is equal to the net overlap of the fields.40 When the mode’s
frequencies are different, the interaction is smaller. However, as
long as the net overlap is still significant, one mode leaves its
fingerprint on the other in terms of remanent fields that appear in
the given mode.41 In our case, the SCR TE011 and DR TE01δ have
very different resonant frequencies; however, they still interact due
to the nondiminishing value of κ, leaving a small TE01δ component
on the TE011 mode. We will show below that this has the effect of a
dramatic reducion in the transfer efficiency.

Here, we apply CMT to describe the effect of the DRs on the
SCR TE011 mode. To fix ideas, the DR closest to the excitation, the
SCR, and the other DR will be denoted resonators 1, 2, and 3,
respectively. For a sinusoidal excitation with frequency ωin, the
amplitude vector of the modes a ¼ [a1, a2, a3]

t can be determined
from the solution of Refs. 12 and 42,

a(ωin) ¼ iωinΦ(ωin)J, (B1)

where J is a 3� 1 column vector that is a function of the excitation
and Φ is the coupling matrix.25 The excitation is coupled to reso-
nators 1 and 2. However, because resonator 1 is very close to the
exciting loop, it will be assumed that the excitation is mainly
coupled to it (i.e., J ¼ [J1, 0, 0]

t). This permits the finding of
simple expressions as was carried out in Ref. 12. Another justifica-
tion of the assumption is that the calculation of the eigenmode
reveals that the amplitude of the SCR mode is approximately 25
times larger than the amplitude of the DR modes. Therefore, if
the excitation couples energy to the SCR mode, a very minute
fraction of the energy will be passed to the DR closer to the load
(resonator 3). The transfer efficiency depends on the ratios
ja2=a1j2 and ja3=a1j2. Hence, η can be written as

η ¼ σLja3=a1j2
(σL þ σ0)ja3=a1j2 þ σ0 þ σ2ja2=a1j2

, (B2)

where σL, σ2, and σ0 are the load, SCR, and DR decay constants,
respectively. Generally speaking, the decay constant σ i is equal to
ωi=2Qi. The ratios a2=a1 and a3=a1 can be found from (B1) to be

a2
a1

¼ (γ0=γ2)
2κ 1� ωin=γ3ð Þ2� 	

1� ωin=γ3ð Þ2� 	
1� ωin=γ2ð Þ2� 	� κ2

(B3)

and

a3
a1

¼ (γ0=γ3)
2κ2

1� ωin=γ3ð Þ2� 	
1� ωin=γ2ð Þ2� 	� κ2

, (B4)

where γk ¼ ωk þ iσk is the complex eigenfrequency of the kth
mode. Albeit the factor γ0=γk, these relations are identical to the
ones derived in Ref. 12. Here, however, the resonant frequencies
of the DR and SCR modes are different, which does not warrant
γ0=γ2 ¼ 1 approximation to be valid. For the system under
consideration, fTE011 � 1:9GHz, fTE01δ � 2:3GHz, the TE011 Q,
Q2 � 100�1000, and the loaded Q of resonator 3 is
Q3 � 100�500. To estimate the order of κ, the expression

derived in Ref. 43 for a closed cavity will be used. Although the
expression is only valid when the distance d is zero, the field profile
of the TE011 does not change much; justifying its use for an order
of magnitude analysis. Moreover, one needs to account for the axial
shift of the DRs, where the fields of the TE011 vary as a sinusoidal
function. Taking all these into consideration, κ � 0:02. Plugging
the above estimates into (B2) and (B3) shows that the efficiency is
always less than or equal to 2%.

To consider the plausible situation where the excitation is
coupled to both resonators 1 and 2, the above arguments can be
modified by taking the interaction with resonator 2 into account, i.e.,
letting J ¼ [J1, J2, 0]

t . This means that the amplitudes ak will be the
linear combination of both interactions (ak ¼ Φk1J1 þΦk2J2). For
values of J2=J1 from 0 up to 10, it was found that still η � 2%.

The antiresonance behavior at fTE011 implies that the mode
cannot be described via the use of the series resonance circuits
in Fig. 2. For such modes, a shunt resonance circuit should be
used instead.
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