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Similar to the hybridization of three atoms, three coupled resonators interact to form bonding, anti-

bonding, and non-bonding modes. The non-bonding mode enables an electromagnetic induced

transparency like transfer of energy. Here, the non-bonding mode, resulting from the strong electric

coupling of two dielectric resonators and an enclosure, is exploited to show that it is feasible to

transfer power over a distance comparable to the operating wavelength. In this scheme, the enclo-

sure acts as a mediator. The strong coupling permits the excitation of the non-bonding mode with

high purity. This approach is different from resonant inductive coupling, which works in the sub-

wavelength regime. Optimal loads and the corresponding maximum efficiency are determined

using two independent methods: Coupled Mode Theory and Circuit modelling. It is shown that,

unlike resonant inductive coupling, the figure of merit depends on the enclosure quality and not on

the load, which emphasizes the role of the enclosure as a mediator. Briefly after the input excitation

is turned on, the energy in the receiver builds up via all coupled and spurious modes. As time elap-

ses, all modes except the non-bonding cease to sustain. Due to the strong coupling between the

dielectrics and the enclosure, such systems have unique properties such as high and uniform effi-

ciency over large distances and minimal fringing fields. These properties suggest that electromag-

netic induced transparency like schemes that rely on the use of dielectric resonators can be used to

power autonomous systems inside an enclosure or find applications when exposure to the fields

needs to be minimal. Finite Element computations are used to verify the theoretical predictions by

determining the transfer efficiency, field profile, and coupling coefficients for two different sys-

tems. It is shown that the three resonators must be present for efficient power transfer; if one or

more are removed, the transfer efficiency reduces significantly. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4975404]

I. INTRODUCTION

Since its introduction a decade ago,1 Wireless Power

Transfer (WPT) via resonant inductive coupling has attracted

immense interest; this is mainly due to its significant effi-

ciency over mid range distances. The efficiency is a function

of both the coupling coefficient and the quality factors of the

source and receiver resonators. In the past decade, different

high Q resonant coils were designed and fabricated. In gen-

eral, coupling falls off rapidly as the source and receiver are

separated by a distance comparable to the coils diameter,

hence limiting the transfer distance.2 The insertion of a relay

resonator between the source and receiver was shown to

extend the transfer distance.3,4 The relay, source, and

receiver couple to form three coupled modes; one mode of

interest, known in Ref. 3 as the dark mode, has the intriguing

property of null fields in the relay. It is responsible for

enhancing the transfer efficiency over an extended range by

creating an Electromagnetic Induced Transparency-like

(EIT-like) process. However for most practical cases, the

excitation of the dark mode without exciting the other two

modes can be quite challenging.

On the other hand, although dielectric resonators (DRs)

appeared as a promising realization of WPT resonators in a

very early work,5 it was later abandoned in favour of capaci-

tively loaded coils. This might be partly due to the easiness

of fabricating capacitively loaded loops where the electric

field is confined within the capacitive region and the mag-

netic field extends well outside the loop to link with other

resonators and hence realizes inductive coupling. Inductive

coupling does not cause the same safety hazards that electric

coupling does. Recently, the use of DR modes was revived.6

In this particular work, the high Q quadrupole modes of two

spherical DRs were exploited to realize an efficient WPT

system.

Due to their low loss and compactness, DRs are used to

improve the efficiency of Electron Spin Resonance Probes.7

It was shown that a DR can strongly interact with an enclos-

ing cavity; such interaction depends on the dielectric con-

stant and the overlap areas.8,9 Unlike inductive coupling, this

type of interaction is purely electric. It was also shown that

two DRs placed in a cavity exhibit a behaviour similar to

how the source, receiver, and relay interact.10

In the current article, we exploit the strong DR/

Enclosure interaction to create an EIT like system capable of

efficiently transferring power. Power can be either trans-

ferred within an enclosed cavity over a distance of the order

of k, or over a wireless gap where, at the steady state, both

the electric and magnetic energies are substantially small.

Unlike conventional WPT systems, the coupling is mainlya)Electronic mail: s.elnaggar@unsw.edu.au.
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electric. The negligible fringing fields suggest that the

scheme can be used in high power or biomedical applica-

tions, where the exposure to fields needs to be minimized.

In Section II, we present the theory of three coupled

centres using two independent approaches: Coupled Mode

Theory (CMT) and circuit analysis. Expressions for the opti-

mum load and maximum efficiency are derived. The condi-

tions at which EIT-like transmission is possible are obtained

and discussed. Finally, the transient response of the fields is

briefly examined. Section III presents the application of the

theory to two systems. Extensive full wave analysis is used

to demonstrate the EIT-like main features, such as strong

coupling, extended transfer distance, high efficiency, and

negligible fringing fields.

II. THEORY

Figures 1(b) and 1(c) depict two typical configurations

that can be described using the coupling between the three

generic centres shown in Fig. 1(a). If the separation between

centres “1” and “3” is large, the direct interaction between

them can be ignored. Nevertheless, centre “2,” the mediator,

still permits indirect interactions between them. The cou-

pling between centre “1” (“3”) and “2” is quantified by the

coupling coefficient j.12 For simplicity, the coupling coeffi-

cient between the pairs (“1,” “2”) and (“2,” “3”) are taken to

be equal. Unlike the capacitively loaded coils (Fig. 1(b)), the

coupling between the DRs and enclosure modes in Fig. 1(c)

is electric. Moreover due to the high dielectric constant and

overlap areas, j can be substantially high.8,9

The behaviour of the coupled system can be explained

using CMT and/or circuit modelling. In the following sub-

sections, the two approaches are used.

A. Coupled mode theory

In general, the interaction between three centres results

in three coupled modes.10 Here, we are mainly interested in

the dark mode, hereafter called the non-bonding mode, since

it resembles the non-bonding orbital in the Molecular Orbital

Theory. For the non-bonding mode, the enclosure/DR1 inter-

action is 180� out of phase with the enclosure/DR3, resulting

in a null component of the cavity mode. This property can be

understood after one writes the eigenvalue problem of the

coupled system13

Ka ¼ x2a; (1)

x2
0 �x2

2j 0

�x2
0j x2

2 �x2
0j

0 �x2
2j x2

0

0
B@

1
CA

a1

a2

a3

0
B@

1
CA ¼ x2

a1

a2

a3

0
B@

1
CA; (2)

where x0 is the resonant frequency of DR1 and DR3, x2 is

the frequency of the enclosure mode that strongly couples

with the DR modes and, x and a are, respectively, the yet to

be determined angular frequency and eigenvector of the cou-

pled system.13 In (2), the on diagonal terms responsible for

coupling induced frequency shifts are ignored.14 However,

their effect is automatically included in the circuit model dis-

cussed in Subsection II B. It is readily seen that x ¼ x0 sat-

isfies the secular equation detðK � x2IÞ ¼ 0 and hence is

one of the eigenvalues of (1). Moreover, the corresponding

eigenvector is found to be

a ¼ ð�1; 0; 1Þ
†

: (3)

As (3) clearly shows, the non-bonding mode correlates the

fields in DR1 with those in DR3 without exciting the enclo-

sure fields. Unfortunately, it is extremely difficult to excite

the non-bonding mode without exciting the other coupled

and spurious modes. By careful design, spurious modes can

be pushed away in frequency and thus minimizing their exci-

tation. Similarly, a large value of j will push the frequency

of the other two coupled modes away from the non-bonding

mode and hence reduce their contribution to the excited

fields. Toward this end, it will be assumed that excitation is

applied to DR1 only. The steady state response ~aðxinÞ to a

sinusoidal input of frequency xin is given by

~aðxinÞ ¼ ixinUðxinÞJ; (4)

FIG. 1. (a) Generic schematic of three

coupled resonators. j is the coupling

coefficient between resonator 1 (reso-

nator 3) and resonator 2; there is no

direct coupling between 1 and 3. (b) A

system of three capacitively loaded

loops.11 (c) A 2DR/split cavity resona-

tor system (2DR/SCR), the coupling

between “1” and “3” is mediated via

the SCR “2.”
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where UðxinÞ ¼ ð�x2
inIþKÞ�1

, K here is the coupling

matrix, given by (1) but with the substitution of the complex

frequencies ck � xk þ ijrkj in place of xk to take losses into

account; jrkj is the decay rate of the mode and it is equal to

xk=2Qk, where Qk is the quality factor. J ¼ ðJ1 0 0ÞT is the

excitation vector15 (See also Appendix A). UðxinÞ is explic-

itly written as

UðxinÞ ¼
�x2

in þ c2
0 �c2

2j 0

�c2
0j �x2

in þ c2
2 �c2

3j

0 �c2
2j �x2

in þ c2
3

0
B@

1
CA
�1

:

The ratios of the fields magnitudes ~a2ðxinÞ=~a1ðxinÞ and

~a3ðxinÞ=~a1ðxinÞ are determined from (4) as

~a2 xinð Þ
~a1 xinð Þ

¼ U21

U11

;

~a3 xinð Þ
~a1 xinð Þ

¼ U31

U11

:

The relevant U elements can be found to be

U11 xinð Þ ¼
1

det U
�x2

in þ c2
2

� �
�x2

in þ c2
3

� �
� c2

2c
2
3j

2;

U21 xinð Þ ¼
1

det U
c2

2 �x2
in þ c2

3

� �
j;

U31 xinð Þ ¼
1

det U
c2

3c
2
2j

2:

The ratio of the field’s magnitudes in the enclosure

mode to the DR1 (source) mode is then given by

~a2 xinð Þ
~a1 xinð Þ

¼ c2
2 �x2

in þ c2
3

� �
j

�x2
in þ c2

2

� �
�x2

in þ c2
3

� �
� c2

2c
2
3j

2
; (5)

¼
j 1� xin=c3ð Þ2
h i

1� xin=c3ð Þ2
h i

1� xin=c2ð Þ2
h i

� j2

: (6)

Hereafter, the frequency of the enclosure mode x2 is

taken to be equal to x0 (i.e., the three resonators have the

same resonant frequency x0). The Q factor of the receiver

Q3 is mainly controlled by the load. Indeed, to deliver a

meaningful output power, Q3 � Qw and is relatively small,

where Qw is the load Q factor. When the system is at reso-

nance (xin ¼ x0), ~a2=~a1 can be small provided that

jQ3 � 1 and Q2 � Q3, which can be achieved if j is made

large enough, as in the coupling of a DR with an enclosure.

The magnitude of ~a2=~a1 then approaches 1=jQ3, a small

value. It is worth noting that the condition Q2 � Q3 can be

relaxed for reasonably large values of jQ3 (i.e., Q2 � Q3 is a

sufficient, but not a necessary condition).

When jQ3 � 1 and Q2 � Q3, the ratio of the fields in

DR3 and DR1 (~a3=~a1) approaches �1, which is similar to

(3). Hence, for significantly large values of j, the non-

bonding mode can be excited with high fidelity.

It is worth mentioning that there will always be reminis-

cent contribution from the other coupled modes. To ensure

that the non-bonding mode is only excited, the system must

be prepared in a state in which the fields in DR1 and DR3

are 180� out of phase. This is possible if the proper excitation

is applied to both DR1 and the receiver resonator DR3,

which defies the purpose of a WPT scheme. It was also

shown that by meticulously changing j with time, the system

can be made to stay in the non-bonding mode.3

B. Transfer efficiency

In WPT systems, one is mainly interested in the transfer

efficiency from the source to the load. The transfer efficiency

g � gðx0Þ can be written as

g ¼ rwj~a3j2

rw þ r0ð Þj~a3j2 þ r0j~a1j2 þ r2j~a2j2
; (7)

¼
rwj~a3 x0ð Þ=~a1 x0ð Þj2

rw þ r0ð Þj~a3 x0ð Þ=~a1 x0ð Þj2 þ r0 þ r2j~a2 x0ð Þ=~a1 x0ð Þj2
;

(8)

where rw models the load absorption. In general, CMT can

be used to find expressions for g. From (5) and assuming that

f � 1=j2Q2Q3 � 1

~a2

~a1

� �i

jQ3

1� fð Þ:

Similarly,

~a3

~a1

� � 1� fð Þ:

Noting that Q ¼ x=2r, (7) can be written in terms of the Q
factors as

g ¼ Q0 1� fð Þ2

Q0 1� fð Þ2 þ Qw þ Q0f 1� fð Þ2
;

where Q3 � Qw was assumed. Noting that F:O:M
� j2Q0Q2. The above equation can be written in a compact

form as

g ¼ f 1� fð Þ2F:O:M

f 1� fð Þ2 1þ fð ÞF:O:Mþ 1
: (9)

The maximum efficiency gmax can be determined by equat-

ing the derivative of the above equation to zero (i.e.,

@g=@fjQw¼Qmax
w
¼ 0), which is equivalent to finding the roots

of a sixth order polynomial. However since f� 1, one can

ignore orders higher than two and solve the quadratic

equation

f2 þ 3F:O:M�1f� F:O:M�1 ¼ 0 (10)

to estimate that for large values of F:O:M (usually the case),

the above polynomial has a root which approaches

f0 � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F:O:M
p

. Hence,
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Qmax
w � 1

j

ffiffiffiffiffiffi
Q0

Q2

s
: (11)

The maximum efficiency gmax can be found by substituting

f0 back in (9)

gmax � 1� 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
F:O:M
p : (12)

From (11) and (12), it is clear that increasing j or Q2 is

desirable to get more useful power out of the system

(decreasing Qmax
w ). In this case, the maximum efficiency

increases as well. The Figure Of Merit quantifies the perfor-

mance of the coupled system. However for the three centre

system, it depends on Q2 rather than on the load Qw, which

is different from the case of two inductively coupled resona-

tors.5 This observation emphasizes the role of the enclosure

as a mediator.

Inside the jQ3 � 1 regime, the non-bonding mode is

excited with high fidelity, which allows us to simplify g
given by (7) to

g ¼ rw

rw þ 2r0

: (13)

For rw � r0, g asymptotically approaches unity. It is

worth noting that when rw ¼ 2r0, the efficiency is 0.5; this

physically means that energy absorbed by the load is twice

that absorbed by each DR, with no energy absorbed by the

enclosure since its fields are not excited.

C. Circuit modelling

In this subsection, the three centre system is modelled as

three coupled LC oscillators. Fig. 2 shows the schematic of

the circuit model. Because of symmetry, the relay capaci-

tance Cr is split into two series capacitance of 2Cr each.

Solving for the mesh current, the efficiency and iR=iS can be

determined for different loads RL and coupling capacitance

Cm. For this particular circuit, j can be determined from the

free running condition (letting Vs¼ 0, see Appendix B),

j ¼ Cm

2
ffiffiffiffiffiffiffiffiffiffi
C0Cr

p : (14)

Once the currents are known, the energy density in each

resonator (/ jij2) can be obtained. The ratio of energy in the

mediator (relay) to that in the input DR as a function of the

coupling coefficient (j ¼ Cm=2
ffiffiffiffiffiffiffiffiffiffi
C0Cr

p
) and Quality factor

of the load Qw ¼ xL0=RL is plotted in Fig. 3 for different

values of j and Qw. The slight shift in the frequency of the

non-bonding mode due to the strong interaction is automati-

cally taken into account. From the figure, it is clear that as j
and Qw increase (moving to the top left corner of Fig. 3(a)),

the energy stored in the relay diminishes, which corroborates

with the CMT prediction. When Q2 � Qw, which is the case

depicted in Fig. 3(c), the energy in the relay is diminished

further. For a fixed Qw value, g increases with the increase of

j. This is because the system is pushed deeper into the

jQ3 � 1 regime and the effect of the non-bonding mode is

more profound. The white line in Fig. 3(b) identifies the loci

where maximum efficiency is attained. Agreeing with (11),

higher values of j correspond to more absorbed load power

(lower Qmax
w ). Moreover, the value of gmax increases with j,

a manifestation of (12). Even lower Qmax
w values can be

achieved by increasing Q2. In this case, gmax is pushed to the

right. For the situation depicted in Fig. 3(d), Q2 increases 104

folds, which according to (11) means that Qmax
w decreases by

two orders of magnitude. Thus, the gmax locus is pushed to

the far right outside of the domain of interest and gmax

approaches unity.

Fig. 4 shows how the efficiency changes as a function of

the load Q. It is clear that the efficiency attains maxima,

especially for lower Q2 values. The positions and values of

these maxima can be accurately estimated using (11) and

(12) as shown in the Figure To calculate g using the circuit

model, the shift of the resonant frequency of the non-

bonding mode due to coupling was determined from (B1).

For j ¼ 0:1, the corresponding frequency shift is 	1%.

D. Transient analysis

So far, the theoretical analysis, either using CMT or cir-

cuit modelling, was concerned with the steady state

response. It says nothing about how the field values inside

the receiver evolve from initial time until the response is

dominated by the non-bonding mode. To examine the evolu-

tion of the fields inside the resonators from the moment the

input source is turned on to the steady state, one must resort

to transient analysis. For the three coupled resonators, we

use state space modelling (See Appendix B), where the sys-

tem is represented by a set of first order coupled ordinary dif-

ferential equations (ODEs). The system is allowed to evolve

from t¼ 0, when the power is turned on till the steady state

is reached. Figs. 5 and 6 show the time evolution of the cur-

rents for two different values of j. In the first case (Fig. 5), j
is very small (�0:0024) and jQ3 < 1, indicating that the

non-bonding mode is not dominant. From Fig. 5, it is clear

that the output current is small, when compared with the cur-

rent in the mediator. This means that the transfer of energy is

inefficient.

The j2Q2Q3 � 1 condition is violated when j is small.

(For the case presented in Fig. 5, j2Q2Q3 � 0:06).

According to (5), the magnitude of the normalized mediator

current reduces to �jQ2, which is equal to 0.25 and agrees

with the magnitude at the steady state determined by the

transient analysis as shown in Fig. 5.

However, when j increases (Fig. 6), energy quickly

builds up in the receiver and the steady state response is

dominated by the non-bonding mode. The fields in both the
FIG. 2. Circuit Model of three coupled resonators, highlighting the relay res-

onator. The electric coupling is modelled by the mutual capacitance Cm.
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source and receiver are approximately equal in value and

180� out of phase. Moreover, the fields in the mediator are

significantly reduced (For the parameters used in Fig. 6, the

steady state value of the mediator current is 1=jQ3 ¼ 0:05

less than the value in either the source or receiver, which

agrees with the steady state value calculated from the tran-

sient analysis).

At the transient epoch, the spectrum of the source as it

turns on is essentially wide band and it excites other cou-

pled and spurious modes. These modes are essentially

responsible for building up energy inside the receiver.

When the frequency values of the modes are sufficiently

different from the non-bonding mode, their effect dimin-

ishes and the steady state response is dominated by the non-

bonding mode.

III. RESULTS AND DISCUSSION

In this section, two systems are studied using full wave

finite element computation. In the first system, power is

transferred from one point to another inside an enclosure

using the interaction between it and two DRs. Hence, the

system is denoted by 2DR/CV. The second system exploits

the interaction between a SCR mode and DRs to transfer

power over an air gap with minimal fringing fields. In this

particular case, the structure is open.

For both systems, the analysis carried out in Sec. II is

still applicable. With no loss of generality, the enclosure

TE011 mode and DRs TE01d modes are used. The resonant

FIG. 3. (Top) The ratio in decibel of

the relay current iR to the source cur-

rent iS as a function of the coupling

coefficient j and the load Qw. The

white curve represents the jQ3 ¼ 1

condition. (Bottom) The transfer effi-

ciency g. The white curve depicts the

locus of the gmax, as given by (11),

which is the maximum efficiency for

each j value.

FIG. 4. The efficiency g curves calculated for different values of Q2 using

the circuit model and the approximate formula (9). The coupling coefficient

j is set to 0.1.

FIG. 5. Transient Response of three coupled resonators for j ¼ 0:0024;
Q2=Q0¼ 1/100. (Top) The current in the Relay (Mediator) resonator.

(Bottom) Current in Source and Receiver Resonators. All current values are

normalized to the peak of the source steady state value. Ts is the period of the

excitation and is equal to 2p=xin. The values of Q0, Q2, and Qw are � 10, 000,

� 100, and �105, respectively.

064903-5 Sameh Y. Elnaggar J. Appl. Phys. 121, 064903 (2017)



frequencies are determined using HFSS
VR

Eigenmode solver

(Ansys Corporation, Pittsburgh, PA, USA). The system

dimensions are tuned to ensure that all resonators have the

same resonant frequencies x0. The driven modal solver is

then invoked to determine the transfer efficiency g. Based on

the argument of Sec. II, the values of the output port charac-

teristic impedance Z02 at which g ¼ 0:5 is numerically found

(Z
02). In this case, the 0.5 efficiency corresponds to

r
w ¼ 2r0; hence, rw can be controlled by changing Z02 as

rw ¼ 2
Z02

Z
02

r0: (15)

The transfer efficiency is calculated from

g ¼ jS21j2

1� jS11j2
: (16)

A. 2DR/CV interaction

For this system, the enclosure is a cylindrical cavity. It

was previously shown that such interaction can be strong and

j can be substantially large.9 Transferring power inside an

enclosure, by exploiting the enclosure modes, gained recent

interest due to the ability of transferring power to any point

in 3D space and long transfer distance.2,16–19 In the follow-

ing discussion, we will discuss point to point transfer effi-

ciency, where the enclosure modes merely act as mediators

(i.e., exploiting the non-bonding mode). The main advantage

of using the non-bonding mode as a vehicle for power trans-

fer is that the energy is localized within the DRs, with mini-

mal penetration in the 3D space.

Figure 7 shows the computed efficiency, which agrees

with (13). It is important to emphasize that the efficiency does

not strongly depend on the transfer distance; also the transfer

distance is significant when compared with the wavelength.

To show the effect of the cavity as a mediator, g is computed

for the two DRs only, when placed 25 cm apart and the cavity

is removed. The efficiency is considerably small (�0:025%),

emphasizing the role of the cavity as a mediator. Similarly, g
was found to be 5% when the cavity is only present and the

two DRs are removed, still considerably lower than when the

both the cavity and DRs are present (�94%).

It is essential to validate that the system depicted in Fig.

7 does indeed operate in the jQ3 � 1 regime. First, j0, the

value of j when a DR is placed at the cavity center was

determined to be �0:097. Because the electric field of the

TE011 mode has a cosðpz=HÞ dependency, j at a distance d
from the cavity center can be approximated by

j dð Þ ¼ j0 cos
pd

2H
; (17)

where H ¼ 75 cm is the cavity height. For d ¼ 40cm,

j � 0:065. Therefore, Q3 should be significantly larger than

15.4 (1=j) to guarantee that the system is in the jQ3 � 1

regime. Note that Q0 ¼ 1= tan d ¼ 10000 and that Qw at 0.5

efficiency (Q
w) is Q0=2. The lowest possible Q3 occurs when

Qw is the smallest; this happens at rw=r
w ¼ 15. Hence, the

lowest Q3 is approximately 333, substantially larger than

15.4, which guarantees that the system operates in the

jQ3 � 1 regime over the entire simulated loads (the

abscissa of Fig. 7). It is worth mentioning that Q2 is large

because the cavity was made of copper. However for SCRs,

Q2 can be considerably smaller due to radiation losses.

B. 2DR/SCR interaction

In this configuration, the enclosure is a SCR.

Historically, this structure was introduced as a component to

measure the dielectric properties of a specimen sandwiched

between the two halves.20 The SCR mode of interest here is

a modified TE011. As long as the gap between the two halves

is small, the fields are confined within the structure, with

FIG. 6. Transient Response of three coupled resonators for j ¼ 0:1897;
Q2=Q0 ¼ 1/100. (Top) The current in the Relay (Mediator) resonator.

(Bottom) Current in Source and Receiver Resonators overlaps. All current

values are normalized to the peak of the source steady state value. Ts is the

period of the excitation and is equal to 2p=xin. The values of Q0, Q2, and

Qw are �10000; � 100, and �105, respectively.

FIG. 7. (Left) Efficiency vs. relative load rw=r
w for d ¼ 25 cm (�0:8k)

and 40 cm (�1:3k). (Right) The system configuration. The DRs are identi-

cal; �r ¼ 29:2, height¼ 26.5 mm, diameter¼ 30 mm, fTE01d � 960MHz,

and tan d ¼ 10�4. The enclosure is a cylindrical cavity made of Cu;

height¼ 75 cm, diameter¼ 38.8 cm, and fTE011
� 960MHz.
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minimal leakage. This can be understood if one considers the

two flanges to act as a parallel plate waveguide. For small

gaps, the waveguide is below cut-off and the fields are con-

fined. In general, the shorter the flanges, the more the leak-

age; and the lower the Q.

Similar to Subsection III A, the efficiency was calculated

for different loads and different input frequency, as depicted

in Fig. 8. Again, there is a good agreement between the com-

puted and predicted efficiency as given by (13) over the rela-

tive load values rw=r
w ¼ 1 to 20. Noting that j0 � 0:1 and

that DRs are separated from the SCR center by 18.7 cm, it can

be shown, identical to the analysis carried out in Sec. III A,

that the system does indeed operate in the jQ3 � 1 regime.

In Fig. 8(b), the other two coupled modes appear as dips sur-

rounding the non-bonding mode. The small dip at �980 MHz

is a higher SCR mode. The efficiency versus frequency plot-

ted in Fig. 9(a) illustrates that the 2DR/SCR structure has a

remarkable efficiency in a wide band determined by the cou-

pled modes, where it attains its maximum value at the non-

bonding frequency. This is to be contrasted to the low effi-

ciency value due to the cavity mode only, which has a narrow

band due to the excitation of the TE011 mode only. Moreover,

the efficiency of the two DRs in the absence of the SCR is

much lower, since they are practically uncoupled.

The non-bonding mode has the intriguing property of

zero enclosure excitation. Such property allows us to down

grade the performance of the enclosure (i.e., reducing its Q).

In Fig. 9(b), the SCR material was changed from copper to

tin, which has a significantly lower conductivity. In this case,

as expected, the efficiency did not significantly change.

Moreover, the flange length was reduced from 20 to 5 cm,

which means that more power can leak from the SCR mode

and hence decrease its Q. Again, the efficiency at the non-

bonding frequency did not significantly change, unlike its

value at other frequencies.

Under the jQ3 � 1 regime, the fields of the enclosure

mode are minimal. On the other hand, the fields of the DR

FIG. 8. (a) The efficiency of a 2DR/SCR as a function of the relative load

rw=r
w. Inset: The geometry and the magnetic field distribution of the non-

bonding mode. The SCR has the following dimensions: height¼ 50 cm,

diameter¼ 37 cm, Flange extension: 20 cm, and the gap¼ 14 cm. Each DR

has the following parameters: �r ¼ 29:2, height¼ 27 mm, diame-

ter¼ 31 mm; and its tan d ¼ 10�4. The resonant frequency of the DRs and

SCR is around 950 MHz. (b) The reflection coefficient S11 as a function of

the operating frequency. The arrow identifies the non-bonding mode.

FIG. 9. (Top) The computed efficiency, expressed in dB, as a function of the

operating frequency. 0 dB is equivalent to unity. (Bottom) Efficiency as a

function of frequency for three different configurations according to the

SCR material and flange extension (20 and 5 cm).
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modes are excited and are confined within the dielectric mate-

rial with an evanescent profile outside it.21 The DRs in Fig.

8(a) are placed deep inside the cavity to ensure that their

fringing fields are minimal in the gap. Fig. 10 depicts the com-

puted axial electric and magnetic fields. The figure shows that

the field amplitudes decrease at the gap; this can be beneficial

in biomedical and high power applications where the electric

and magnetic fields can cause safety hazards.

To further clarify the unique properties of the non-

bonding fields when compared with the other two coupled

modes, Fig. 11 shows the normalized magnetic field of the

three modes. From the figure, it is clear that, unlike the non-

bonding mode, the SCR mode manifests itself in the lower

(bonding) and higher (anti-bonding) modes.

The dimensions and properties of the 2DR/SCR struc-

ture can be optimized for better efficiency, transfer distance,

and compactness. This can be achieved, for example, by

optimizing the DR dimensions and dielectric constant.

Although the transfer distance (�k=2) is large when com-

pared with the usual sub-wavelength regime of resonant

inductive coupling devices, this usually comes with the price

of large SCR dimensions. The SCR dimensions can be

reduced by shortening the flange extrusion as was shown in

Fig. 9(b). It can be further reduced via the embedding of a

suitable dielectric material. The gap width can also be

increased by raising its cut-off frequency, which may be by

engineering corrugations on its surface, which acts as an

effective epsilon near zero surface in the vicinity of the reso-

nance frequency. This has the effect of increasing the cut-off

frequency of the parallel plates waveguide formed by the

upper and lower flanges. In some applications, however, the

2DR/SCR structure can take advantage of the metals already

present and may be unavoidable.

FIG. 10. Normalized fields at different phases. (Top) Normalized Magnetic

Field along the SCR axis. (Bottom) Normalized axial Electric Field at the

DRs radius. The DRs are denoted by the shaded rectangles around the peaks. FIG. 11. (a) Reflection Coefficient S11 showing the three coupled modes.

The lowest frequency is that of the bonding mode, while the anti-bonding

mode has the highest frequency. (b) The axial normalized magnetic field of

the three modes. The DRs are denoted by the shaded rectangles around the

peaks.
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IV. CONCLUSION

The non-bonding mode, resulting from the interaction

of two dielectric resonators with an enclosure, induces an

electromagnetic induced transparency like process capable

of efficiently transferring power over a distance comparable

to k. Unlike resonant inductive coupling, the coupling is

mainly electric. Coupled Mode Theory and Lumped Circuit

models were used as the analytical tools to determine the

system parameters such as the optimal load Qmax
w and the

corresponding maximum efficiency gmax. The strong cou-

pling between the dielectrics and the enclosure makes it

possible to excite the non-bonding with high fidelity. The

efficiency of the system is predicted to be high and asymp-

totically approach unity. It does not depend on the transfer

distance even when the distance is of the order of k, thus

suggesting that the analysis developed here can be used to

design WPT systems that can efficiently power autonomous

systems placed in a controlled environment. During steady

state, the enclosure mode has insignificant contribution to

the total fields. Hence, it is possible to use low profile

enclosures and design systems, which have negligible fring-

ing fields. This suggests its use in biomedical or higher

power applications, where the exposure to the electromag-

netic fields is of great concern. During the transient epoch,

briefly after the input excitation is turned on, the energy in

the receiver builds up via all coupled and spurious modes.

However since they are off-resonance, the non-bonding

mode only sustains in the steady state response.

APPENDIX A: FORCED ENERGY CMT

Here, we present an outline of how the coupled mode

Equation (4) was obtained. For an elaborate discussion,

please refer to Ref. 15. The E and H fields of the coupled

modes are expanded in terms of the uncoupled ones (Ek and

Hk), where akðtÞ and bkðtÞ are time dependent to take into

account the effect of the time dependent impressed source

(Jimp). Accordingly,

E ¼
XN

k¼1

akðtÞEk and H ¼
XN

k¼1

bkðtÞHk; (A1)

where N is the number of interacting modes (N¼ 3 for the

three centre system). As was carried out in Ref. 13, the

coupled mode equations can be determined by expanding

r � ðE
k �HÞ and r � ðE�H
kÞ, using Maxwell’s equations

and (A1). The time dependency of akðtÞ and bkðtÞ and the

presence of Jimp generalize the coupled equations to

A _a þ ðMþF � iXBÞb ¼ J ; (A2)

G _b þ ðM† � iXDÞa ¼ 0; (A3)

where A;M; F , B; G, and D are N�N matrices that are

functions of the overlap integrals and are defined in Ref. 13. X
stores the uncoupled complex frequencies and J is an N � 1

column vector, which includes the forcing terms due to the

interaction of the modes with Jimp. Its kth row is given by

J k ¼ �
ð

V

Jimp � E
k dv:

Eqs. (A2) and (A3) are coupled differential equations in the

field amplitudes. Under the assumption that radiation losses

are small, one finds that

€a þKa ¼ A�1 _J ; (A4)

where K ¼ A�1D†

XG�1XD.13 Taking the Laplace transform

of (A4), the response can be expressed in the s� domain as

Lfag ¼ UðsÞ s _að0Þ þ að0Þ þ sUðsÞLfJ g;½ (A5)

where UðsÞ � ðs2I þKÞ�1
is the N�N matrix transfer func-

tion. When the system is excited by sinusoidal inputs of fre-

quency x, the steady state response is determined by the last

term in the R.H.S of (A5) as

~aðxÞ ¼ ixUðxÞLfJ gjs¼ix; (A6)

where s is replaced by ix.

APPENDIX B: ANALYSIS OF CIRCUIT MODEL

Fig. 12 shows the equivalent circuit of the three coupled

LC circuits (Fig. 2).

The currents in each loop can be determined after solv-

ing the mesh equations

Rs þ R0 þ jxL0 �
j

xC00

� �
iS þ

j

xC00
i1 ¼ Vs;

j

xC00
iS þ

�j

xCm
� j

2xC0r
� j

xC00

� �
i1 þ

j

2xC0r
iR ¼ 0;

� j

2xC0r
þ jxLrþRr�

j

2xC0r

� �
iRþ

j

2xC0r
i1þ

j

2xC0r
i2¼0;

j

2xC0r
iR þ � j

xCm
� j

xC00
� j

2xC0r

� �
i2 þ

j

xC00
iL ¼ 0; and

�j
1

xC00
þ jxL0 þ R0 þ RL

� �
iL þ

j

xC00
i2 ¼ 0;

where C00 � C0 � Cm and 2C0r � 2Cr � Cm.

1. Determine j from the circuit model

Using (1), CMT predicts that the frequencies of the cou-

pled system are given by

x1 ¼ x0;

FIG. 12. Equivalent circuit of the coupled resonators in Fig. 2. The coupling

capacitance Cm is replaced by an equivalent p network.
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x2 ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
2
p

j

q
;

x3 ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffi
2
p

j

q
:

To determine the frequencies using the circuit model,

we consider the lossless case. The system is depicted in Fig.

13. Because of symmetry around the plane T � T0, two cases

are considered: (1) T � T0 is a Perfect Magnetic wall (iR¼ 0)

and (2) T � T0 is a Perfect Electric wall (v¼ 0). The Perfect

Magnetic wall case corresponds to the mode where the relay

mode is not excited (iR¼ 0). Accordingly, the equivalent

capacitance seen from either sides of T � T0 is

Ceqv ¼
2CmC0r

2Cr
þ C00 ¼ C0 �

C2
m

2Cr

Therefore, the resonant frequency xr will be

xr ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

L0Ceqv

p ¼ x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

m=2CrC0

p ; (B1)

indicating that, unlike the approximate CMT analysis, the

circuit model predicts a slight blue shift in the frequency of

the non-bonding mode.

When the symmetry plane is a Perfect Electric wall, the

equivalent circuit is shown in Fig. 14. The resonance fre-

quency in this case can be found by calculating the total

impedance to determine the frequency at which it vanishes.

Thus, the other two resonant frequencies x2 and x3 are

found to be

x2 ¼ x0ð1� Cm=
ffiffiffi
2
p

C0Þ; (B2)

x3 ¼ x0ð1þ Cm=
ffiffiffi
2
p

C0Þ: (B3)

Comparing the above two equations with the ones calculated

using CMT, it is can be found that

j ¼ Cm

2
ffiffiffiffiffiffiffiffiffiffi
C0Cr

p : (B4)

2. State space modelling

To derive a state space formulation for the three coupled

centres, expressions for the time rate of the independent state

variables (inductors currents and capacitors voltages) need to

be obtained. For the circuit model in Fig. 12, there are seven

independent energy storage elements. Using the basic circuit

theory, the system of first ODEs can be written as

dv1=dt

dv2=dt

 !
¼

C0 �Cm

�Cm 2Cr

 !�1
iS

�iR

 !
;

dv3=dt

dv4=dt

 !
¼

2Cr �Cm

�Cm C0

 !�1
iR

�iL

 !

for voltages across capacitors and

diS

dt
¼ Vs

L0

� R0 þ Rs

L0

iS �
v1

L0

;

diR

dt
¼ 1

Lr
v2 �

1

Lr
v3 �

Rr

Lr
iR;

diL

dt
¼ 1

L0

v4 �
R0 þ RL

L0

iL;

for currents through inductors.
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