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Three Wave Mixing as the Limit of Nonlinear Dynamics
Theory for Nonlinear Transmission Line Type Metamaterials

Sameh Y. Elnaggar, Member, IEEE, and Gregory N. Milford, Member, IEEE

Abstract—Using nonlinear dynamics theory, a linear time periodic
equivalent circuit of a sinusoidally pumped distributed transmission line
type metamaterial is proposed. For small pump power and sufficient
number of unit cells, it is shown that three wave mixing, coupled
with phase matching, can be used to determine the frequencies of the
autonomous components and their propagation behaviour. The resulting
signal and idler waves satisfy the well-known Manley-Rowe relation.
However, unlike nonlinear dynamics theory and stability analysis, three
wave mixing can be inaccurate for relatively large input power levels
and/or short transmission lines. In particular, the waveform profile and
consequently radiation of the autonomous frequencies located inside the
light cone cannot be described using three wave mixing and nonlinear
dynamics and/or stability analysis must be applied.

Index Terms—Nonlinear Metamaterials, Nonlinear Dynamics, Com-
posite Right Left Handed Transmission Lines

I. INTRODUCTION

MEtamaterial structures constructed with nonlinear unit cell
components have demonstrated a range of interesting be-

haviours, such as harmonic generation and amplification [1], [2],
parametric frequency leaky wave radiation [3] and multiple para-
metric frequency generation [4]. Such structures offer a potential
technology that both complements existing transistor technologies,
and extends the range to terahertz and optical frequencies for signal
processing applications [5]. Still lacking though are design procedures
based on a rigorous understanding of the interactions between forward
and backward propagating waves in the presence of the strong and
controlled distributed nonlinearities.

Accurate analysis of nonlinear distributed structures can be quite
challenging. Inspired by nonlinear optics approaches [6], Nonlinear
Composite Right-Left Handed Transmission Lines (NL CRLH TL)
have been analysed in terms of the interaction of autonomous para-
metric waves excited by the coupling of a strong input pump signal
and its higher harmonics with the nonlinearity [7]. This frequency
domain approach, referred to as three wave mixing (TWM), assumes
stable steady state behaviour and matching of wave numbers and
frequencies of only three significant terms, namely the pump, signal
and idler (parametric) waves. However the tendency for NL CRLH
TL structures to exhibit instability [8] and the excitation of multiple
incommensurate autonomous frequencies [4] can render wave mixing
approaches impractical due to the necessity of knowing such complex
behaviour a priori. Another more fundamental concern is that TWM
assumes a weak nonlinearity, which although satisfactory for optical
media illuminated by high intensity lasers (eg. Kerr nonlinearity [6]),
may not be valid when applied to finite length metamaterial structures
with significantly higher order nonlinearities (eg. varactor diodes [9]).

Traditionally nonlinear systems are described in the time domain,
usually with the problem cast in the form of a set of first order
differential equations (state space formalism) that accurately reflect
the underlying physics, with amplitude nonlinearities and variable
time delay effects (frequency dispersion) automatically included [10].
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To rigorously describe TL type metamaterials excited by a con-
tinuous sinusoidal (pump) input, a framework based on nonlinear
dynamics (NLD) theory was developed in [11], [12]. Using this
approach, the autonomous frequencies and their spatial distribution
were calculated using the time periodic (or T-periodic) system,
resulting from linearization at a limit cycle. It was shown that the
spontaneous generation of the autonomous components is equivalent
to a bifurcation of the limit cycle to a more complex limit set:
an n-dimensional torus [11]. Importantly, good agreement between
time domain numerical predictions and measurements has been
demonstrated, including the autonomous frequency values in the
vicinity of the lowest Bragg frequency [13]. In this case, the effective
homogeneity condition is violated and the TL behaves more like
a photonic crystal [14]. Additionally, NLD predicts that, whenever
bifurcation occurs, there is potentially an infinite number of generated
autonomous components; they are nothing but the time harmonics due
to the time periodicity of the linearized system.

In contrast to a NLD analysis, the application of a simpler TWM
analysis to a NL CRLH TL structures is more appealing. Given the
choice, it is desirable to have some criteria to guide this decision.
In this article we show that TWM is the limit of NLD when the
nonlinearity is small and the distributed structure extends to infinity.
Section II briefly reviews the NLD analysis of a NL CRLH TL
structure. Modeling perturbations to the steady state limit cycle allows
determination of the autonomous frequencies and their waveforms,
including the onset of bifurcation and/or instability. In Section III
we describe a T-periodic unit cell equivalent circuit, which for small
pump amplitudes describes perturbations about the limit cycle. Then
in Section IV, assuming the only significant spectral components are
the pump, signal and idler, the TWM phase matching condition is
derived for the NL CRLH structure. Finally, Section V demonstrates
the relative performance of TWM based analysis compared to NLD
results for determining the magnitude and phase of the spontaneously
generated autonomous waves components, for a range of pump
amplitudes and frequencies.

II. NON-LINEAR DYNAMICS

In this section, we briefly review how NLD theory is applied to
study the properties of NL CRLH TL structures (for a more detailed
analysis please see [12]). The first step is to describe the system using
a nonlinear state space model (SSM) [10], [15]

ẋ(t) = f ( x(t),u(t) ) , (1)

where x and u are the state and excitation vectors, and f is
some nonlinear operator [15], [16]. For the case of excitation by a
single sinusoidal (pump) input at frequency fP , the dynamics of the
bifurcation can be investigated by linearising the response at the limit
cycle. As was previously shown, the linearized system is T-periodic,
where T = 1/fP . Consider the application of NLD theory to the NL
CRLH TL structure shown in Fig. 1, which consists of a cascade of
identical unit cells of series and shunt lumped elements. Resistors R
in each unit cell account for any conductor or parasitic Ohmic losses
in the structure. Fig. 2 shows the dispersion relation extracted from
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Fig. 1. A lumped circuit model of two unit cells of a N-stage NL CRLH TL.
Nonlinearity is implemented with varactors having voltage dependent capac-
itance CL. Typical values: R = 0.5 Ω, LL = 1.797 nH, CR = 1.100 pF,
LR = 2.700 nH, CL = CL0 = 0.730 pF at bias voltage Vb=+1.290 V for
a balanced configuration [17].
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Fig. 2. The dispersion characteristics of the LTI system using the lumped
circuit model and compared to the characteristics extracted from measure-
ments.The light lines and different regions are highlighted. The light lines
intersect the dispersion characteristics at f ≈ 3.2 GHz and f ≈ 4.2 GHz.
The transition frequency (βp = 0) is 3.6 GHz.

measurements [17], compared to the dispersion response computed
using the lumped circuit model in Fig. 1, where the varactors were
replaced by CL0, the capacitance determined by the bias voltage
Vb. Since all other circuit components are constants, this model is
denoted here as linear time invariant (LTI). Between the light lines
shown in Fig. 2, the NL CRLH TL acts as a leaky wave antenna [3],
[14]. In Section V, we discuss the influence of the nonlinearity on
the direction of the main beam when the autonomous frequencies are
inside the light cone.

To construct the state vector x in (1), Ns independent inductor
currents and capacitor voltages are chosen as the state variables.
For a given input pump amplitude we numerically solve (1) to find
the states at discrete time steps. Whenever the input is below some
threshold, the system reaches a limit cycle. However, increasing the
input power above the threshold renders the limit cycle unstable,
resulting in the emergence of autonomous frequency components that
propagate along the TL. In this context, the onset at which the input
excites autonomous components identifies a bifurcation condition.

We now consider a small disturbance or perturbation vector x(t)
to The disturbance x(t) at the limit cycle solution x̄(t). x(t) can
be described using a T-periodic system of first order differential
equations.

ẋ =
∂f

∂x

∣∣∣∣
x̄

x = J(x, t)|x̄ x (2)

J is the Ns x Ns Jacobian matrix evaluated at the limit cycle; hence
is T-periodic. Generally, the solution of (2) is not necessarily periodic
and, for any initial disturbance x(to) at time to, can be written as
[18]

x(t) = P̃(t) e(t−to)R̃ S−1 x(to), (3)

where P̃(t) is a T-periodic matrix and R̃ is a diagonal matrix; its
diagonal elements µi ≡ σi + jθi/T are the Floquet exponents. S
is a constant valued similarity transform matrix that ensures matrix
R̃ has diagonal form (see [12] for details). Noting that S and x(to)
are constants, we observe that all of the time dependent behaviour
is described by the product of the P̃(t) and exponential matrices,
which has time varying column vectors of the form:

ηi(t) = eµi(t−to)p̃i(t) + cc, (4)

where p̃i(t) is the ith column of P̃(t). If σi > 0, the ηi solution grows
with time and hence identifies an instability condition. At the onset
of bifurcation, typically only one or a few σi ≈ 0 and the remaining
σi values are negative. Hence these µi terms dominate the solution
as time increases. This affords us a means to synthesise a disturbance
x(t) that has the same stability characteristics as (3) with arbitrary
initial states x(to). We identify the dominant Floquet exponents,
retain only these terms in the P̃(t) and R̃ matrices while zeroing
out the rest, and compute x(t) from (3) using the modified P̃(t)
and R̃. In the subsequent discussion this will be referred to as the
Stability method. Observation of the spectra for the time series x(t)
satisfying (1) typically shows multiple spectral lines, corresponding
to radian frequencies ω = |θi ± 2kπ|/T, k = 1, 2 . . .. In this way
the Floquet exponents determine both the amplitude (stability) and
frequency of states x(t). The imaginary part θi of µi determines the
autonomous frequencies.

III. T -PERIODIC EQUIVALENT CIRCUIT

Since all of the states in x(t) are either voltages or currents, an
equivalent circuit model for the disturbance x(t) can be developed
by identifying the i, v relationships between elements in a given row
of J and that row’s voltage/current variable in x(t). The result for a
single unit cell is shown in Fig. 3.

R
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LR

y(n)(t)

C
(n)
L

+ −
u(n)

LL

k(n)

CR

v(n−1) v(n)

Fig. 3. Equivalent Circuit of the nth unit cell of the T -Periodic system.

Furthermore, by considering small pump voltage amplitudes, the
dependence of the nonlinear varactor capacitance CL and admittance
y on the time varying voltage u(t) can be linearised about the bias
voltage. In a manner similar to the development of linear circuit
models for active devices such as transistors and diodes, J can
be represented by an equivalent circuit model. Fig. 3 shows the
equivalent circuit of one unit cell representing the set of linearized
equations of the TL given in Fig. 1. Provided u(t) is dominated by
the pump, ie. u(t) = uP (t), the series capacitance C(n)

L at the nth

stage is T-periodic and is given by

C
(n)
L

(
u

(n)
P

)
= CL0 +

[
∂CL

∂u

]
Vb

u
(n)
P (t) = CL0

(
1 +M

(n)
0 u

(n)
P (t)

)
,

(5)
where u

(n)
P is the voltage across C

(n)
L determined by the pump

wave and its higher harmonics, M (n)
0 ≡ (−1)n+1/(ψ0 + VB) and

ψ0 depends on the varactor model [12]. Similarly, the T-periodic
admittance y(n)(t) is given by

y(n)(t) = M
(n)
0

(
1 +M

(n)
0 u

(n)
P (t)

)
i
(n)
P (t), (6)
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where i(n)
P (t) is the current due to the pump and its higher harmonics.

Note that (5) and (6) are essentially the first two terms in a
Taylor series expansion of the varactor’s capacitance and admittance
dependence on pump voltage u(n)

P about the bias point Vb, where the
higher order terms can be neglected provided the pump amplitude
u

(n)
P � ψ0 + Vb.
In general, the strength of the nonlinearity increases as the slope

of the C-V at the bias voltage and the magnitude of the pump voltage
increase (refer to Eq. 5). Thus, it is expected that nonlinearity can be
considerably higher for abrupt C-V devices. For the varactors shown
in Fig. 1, ψo = 2.06V and Vb = 1.290V hence the nonlinear term
can be approximated to 0.3CL0u

(n)
P . The nonlinearity factor

M ≡ 1

CL0

∣∣∣∣∂C∂u
∣∣∣∣
Vb

|uP | =
|uP |

ψ0 + Vb
≈ 0.3|uP |. (7)

Although the pump and its higher harmonics are periodic, the
circuit is not periodic in the spatial domain. This is evident by noting
that the dispersive behaviour of CRLH TLs implies that the pump and
its higher harmonics do not propagate with the same speed. Due to the
back-to-back varactors configuration, the effect of the nonlinearity is
sub-wavelength (microscopic) which is emphasized by the (−1)n+1

term in M
(n)
0 in Eqs. (5) and (6). This means that, generally, the

finite size of the unit cell plays an essential role in describing the
propagation of the autonomous waves, as was experimentally and
numerically observed [13], [19].

Before embarking on the details of the TWM analysis, it is helpful
to highlight the main differences between the T-periodic equivalent
circuit in Fig. 3 and the nonlinear equivalent circuit in Fig. 1. The
circuit in Fig. 3 represents the time periodic equivalent circuit of the
circuit in Fig. 1. The solution of (1) for the circuit in Fig. 1 can
be readily determined by a brute-force ODE solver, and completely
determines the current and voltage values as a function of time.
However, valuable insight into the interaction of propagating waves
and circuit quantities is lost. On the other hand, the linearized circuit
encapsulates the effect of the pump wave in the T- periodic lumped
parameters and hence presents the problem in a cause and effect-
like form. This is identical to traditional analysis of transistors and
amplifiers. However the analysis here is linearized around a limit
cycle rather than at a bias point [12].

IV. THREE WAVE MIXING

In this Section we apply a TWM approach to the structure of
Fig. 1, where we assume that the pump excitation excites only two
other propagating waves in the NL CRLH structure, namely the Idler
(I) and the Signal (S) (not to be confused with the matrix S in (3),
which will not be referred to in the subsequent discussion), such that

ωP = ωS + ωI . (8)

This approach is common practice in nonlinear optics where the
homogeneous optical media typically exhibit very weak nonlinear-
ities [6]. Any state variable x (for example i(n) or v(n)) can be
written as

x(t) = xS(t) + xI(t) + cc. (9)

Generally speaking, the pump current i(n)
P is periodic with frequency

fP and hence can be expanded in a Fourier series. Assuming that the
nonlinearity is weak, usually the case for small input pump power,
and noting that there is no DC component, i(n)

P can be simplified to

i
(n)
P = I1 cos(2πfP t+ φ1). (10)

Similar expressions can be found for the other state variables. The
equivalent circuit in Fig. 3 together with (5) and (6) allow us to

write the following equations for the voltages and currents at the
signal frequency ωS :

jωSi
(n)
S LR = v

(n−1)
S − i(n)

S R− v(n)
S − u(n)

S , (11)

jωSk
(n)
S LL = v

(n)
S , (12)

jωSv
(n)
S CR = i

(n)
S − k(n)

S − i(n+1)
S and (13)

i
(n)
S = M

(n)
0

ωS

ωP
i
(n)
P ū

(n)
I + jωSCL0u

(n)
S . (14)

In the last equation, the voltage u(n) was expanded in the signal
and (conjugate) idler components as given by (9); the T-periodic CL
and y couple the signal with the complex conjugate of the idler.
Equations for the idler can be readily obtained from the above ones
by exchanging S and I . In the absence of the pump wave (i(n)

P = 0),
(11) - (14) describe a LTI CRLH TL.

It is worth noting that no condition was imposed on the spatial
distribution of the signal and idler. However if one seeks wave
solutions, Bloch-Floquet theory can be applied to an infinite length
CRLH structure [14] to express the generic state variable xΠ, for
Π = S, I , in the form x

(n)
Π = x

(n−1)
Π e−jβΠp, where p is the length

of the unit cell. Substituting back the assumed form in (14), shows
that the coupling between the signal and idler can be maximized
when

(βP − βS − βI) p ± π = 2mπ, m = 0,±1,±2, · · · , (15)

which is essentially the phase matching condition. The ±π term
is due to the back to back connection of the varactors, which is
equivalent to material polling in nonlinear optical media. However
in the current situation, it is microscopic in nature. Together (8) and
(15) along with the dispersion characteristic identify ωS and ωI for
a given pump frequency ωP .

The T-periodic equivalent circuit and the set of (11) - (14) guar-
antee that the signal and idler satisfy the well-known Manley-Rowe
equations. This can be shown by noting that the power P (n)

Π generated
due to the nonlinearity is given by P (n)

Π = 1/2Re
(
u

(n)
Π ī

(n)
Π

)
, which

can be expanded using (11) and (14) to give

PS/ωS = PI/ωI , (16)

that is, the Manley-Rowe relation.

V. RESULTS AND DISCUSSION

The system of equations (11) - (14) describes the local in-
teraction between the signal and idler waves as they propa-
gate along the TL. For practical scenarios, the TL is finite.
Here, we will consider N stages only with 6N unknowns:
v

(n−1)
S , i

(n)
S , u

(n)
S , v

(n−1)
I , i

(n)
I and u(n)

I , n = 1, 2, . . . N . Note that
k

(n)
S,I are readily obtained from v

(n)
S,I via (12). Given the boundary cur-

rents and voltages i(N+1)
S , i

(N+1)
I , v

(N)
S , and v(N)

I ; and the spatially
varying pump current i(n)

P , (11) - (14) form a set of inhomogeneous
linear algebraic equations, which can be simultaneously solved to
determine all currents and voltages.

To obtain solutions which match with results obtained from the
nonlinear system (1), the boundary currents and voltages are deter-
mined from the spectra of the time series solution x(t) in (1) at ωS
and ωI for any given ωP .

In addition the Stability analysis described in Section II is invoked
to compute the signal and idler amplitude and phase values calculated
from the time series vector x(t) in (3). Figs. 4 and 5 show two typical
results, for N = 20. From Fig. 4 it is evident that TWM accurately
predicts the signal and idler magnitudes and phases.. In this case
fP = 4.5 GHz and the onset of bifurcation occurs at VP0 = 0.39 V,
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Fig. 4. Normalised amplitude and phase of the autonomous frequencies
calculated for fP = 4.5 GHz, VP = VP0 = 0.39 V, and N = 20 TWM
(green traces): solution of (11) to (14) for selected n; NLD (red traces):
spectral values from time series solution x(t) in (1); Stability (blue races):
spectral values from time series solution x(t) in (3).

where VP0 is the applied pump voltage. However when fP increases
to 5.8 GHz, the onset of bifurcation increases to 1.4 V where this
larger pump voltage excites a stronger nonlinear response.

In passing, it is useful to point out to the rationale behind using
the two frequencies fP = 4.5 GHz, and fP = 5.8 GHz as the
two test cases. In the vicinity of 4.5 GHz, it was numerically and
experimentally found that the onset of bifurcation is obtained with a
minimum pump amplitude (Ref. [12], Fig. 3). Therefore at 4.5 GHz
the smaller pump amplitude implies a relatively weak nonlinearity.
However above around 5.5 GHz, the onset of bifurcation appears at
larger pump amplitudes, implying a relatively stronger nonlinearity.
When fP= 6 GHz the nonlineariy becomes significantly high such
that the varactor nonlinear model is questionable. So as a compromise
we used 5.8 GHz.

As Fig. 5 illustrates, the disparity between the TWM and the
NLD and Stability analysis results suggests the TWM method is
less accurate at this higher pump level. The disagreement between
NLD and stability analysis on one hand and TWM on the other
can be explained by examining the underlying assumptions. When
the nonlinearity is weak, it is reasonable to assume that only the
pump wave mediates the interaction between the time harmonics
(i.e, ignoring the effect of second and higher harmonics). In general
though this is not the case. Additionally, TWM limits the analysis
to the pump plus two dominant time harmonics (signal and idler).
However, according to Bloch-Floquet theorem the time periodicity
of the system dictates that a complete solution will be the linear
combination of all time harmonics (f+mfp,m ∈ Z). In contrast, the
Stability approach encapsulates the pump and all its higher harmonics
in the limit cycle, hence all time harmonics emerge naturally in the
stability analysis as a result of the ambiguity of the phase of the
Floquet multipliers [12]. So when fP changes from 4.5 to 5.8 GHz,
the onset of bifurcation increases from a pump amplitude of 0.39 V
to 1.4 V, which increases the nonlinearity. This in turn renders TWM
questionable, which is indeed why TWM did not predict the correct
amplitudes as shown in Fig. 5. Interestingly Fig. 5 indicates the phase
shift is still accurate over many unit cells; this corresponds to an
accurate phase shift per unit cell and, consequently, accurate phase
velocity. It is worth noting that the Stability analysis of (3) predicts
the phase profile within a constant phase factor; this is due to the
fact that ηi in (4) represents a solution that can be multiplied by an
arbitrary complex number (ie. phase offset). So not only does a large
VP0 render the TWM approximation questionable, it also modulates
the TL characteristic impedance and hence allows multiple reflections
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Fig. 5. As for Fig. 4 but with fP = 5.8 GHz, VP = 1.4 V and N = 20.

from the input and output ports; and between the unit cells. On the
other hand, the NLD and Stability analysis methods stem from the
local interactions of the state variables (mesh and nodal analysis); any
variations due to the pump and its higher harmonics are encapsulated
in the limit cycle around which the linearized solution revolves.

From (5) and (7), it is clear that the strength of the nonlinearity
for fP = 5.8 GHz is 3.5 times its value at fP = 4.5 GHz. In
the general case, it is difficult to put a single number that separates
between the weak and strong nonlinearity regimes. This is because
for a general distributed system, the effect of the nonlinearity is
accumulative depending on the phase of autonomous components as
well as terminations and the exact circuit configuration. In the case
in hand, however, an estimate value of |M | = 0.1 can be used to
separate the two regimes. This value is midway between the values
that |M | attains at fP = 4.5 GHz (≈ 0.06), and fP = 5.8 GHz
(≈ 0.2).

The autonomous component at frequency 3.776 GHz lies inside the
light cone and hence radiates. It is found via numerical analysis that
TWM cannot predict the waveform and phase for other components
inside the light cone. This means that NLD and/or Stability analysis
must be used to determine the radiation properties. Fig. 6 shows
the waveform and phase of another two autonomous frequencies
inside the light cone emphasizing the need to use NLD and Stability
analysis. It is worth noting that the phase velocity is co-directional
with the pump (negative slope of phase, Fig. 6, fP = 5.0 GHz)
when the autonomous frequency is below the transition frequency
(f ≈ 3.6 GHz). However, increasing the pump frequency will
eventually results in an autonomous frequency that is in the RH
regime. Such frequency has a phase velocity that is contra-directive
with the pump (indicated by the positive slope of the phase in Fig.
6, fP= 5.6 GHz). Due to the spatial variation of the amplitude (Figs.
5 and 6), the exact radiation pattern depends on the exact amplitude
and phase profile of the current on the NL CRLH TL.

If the number of stages N is increased from 20 to 80, the
autonomous components appear at a lower VP0 of 0.505 V. Fig.
7 shows the calculated amplitude and phase of the autonomous
components. It is evident that the TWM accuracy has significantly
increased (compared to Fig. 5). This is partly due to the lower VP0

and the larger number of unit cells.
Finally, the phase matching condition (15) is numerically verified.

First, the phase mismatch ∆β is defined as

∆βp ≡ |βP − βS − βI | p, (17)

which is equal to (2m+1)π whenever the phase matching condition
(15) holds. In particular, ∆βp = π for m = 0. Second, the phase
shift βS , βI and βP are determined from the LTI dispersion relation
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Fig. 6. Normalized voltage and phase of two autonomous frequencies inside
the light cone. Left: fP = 5.0 GHz, Right: fP = 5.6 GHz
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Fig. 7. As for Fig. 4 but with fP = 5.8 GHz, VP = 0.505 V and N = 80.

depicted in Fig. 2 and from the phases of the autonomous components
such as the ones depicted in Figs. 4, 5 and 7 by fitting the phase
response to a straight line and calculating its slope. Then the phase
mismatch ∆βp is calculated using (17) and presented in Fig. 8. It
is clear that the phase matching condition holds within an error
bound of less than 10%. The discrepancy between LTI and NLD
results is attributed to the slight change of the phase shift due to the
presence of the pump. Interestingly, the directions of propagation
of the autonomous components change as function of the pump
frequency fP . Below fP = 4.5 GHz (region A), both the signal
and idler phase velocities are co-directional with the pump phase
velocity. Because they are in the left hand band, the energy (or
equivalently, the group velocity) propagates in the backward direction
toward the source. For the phase matching condition (15) to hold as
pump frequency increases, the idler direction switches in region B
and subsequently, the direction of the signal changes in region C.
This behaviour was previously described based on a purely numerical
approach [19].

As long as the spatial variation of the autonomous frequency is
slow, the direction of the radiated main beam can be determined
by the phase alone. In this case, the main beam changes from the
backward end fire to broadside and then toward the forward end
fire. However, when the nonlinearity increases the amplitude variation
smears out the radiation pattern equivalent to the effects of amplitude
tapering in an aperture antenna. For the NL CRLH TL modeled by the
lumped circuit in Fig. 1, the onset of bifurcation VP0 attains a local

Fig. 8. Phase mismatch |∆β/π| (17) with β values from Fig. 2, compared
to values calculated from the phases of the respective spectral components of
the time series solution x(t) in (1). fP = 4.4− 5.8 GHz and N = 20

minimum close to the transition frequency. VP0 and consequently the
nonlinearity factor M double at the right hand edge of the light cone,
resulting in an increased amplitude for the T-periodic circuit elements
depicted in Fig. 3 and described by (5) and (6). The phase change
at the right edge coupled with the strong nonlinearity, increase the
spatial variation between two consecutive unit cells of the lumped
elements given by (5) and (6). This has the effect of enhancing
the local interaction with the autonomous components, resulting in
a smeared radiation pattern, as was experimentally observed from
measuring the radiation pattern of the NLCRLH TL [3].

VI. CONCLUSION

We exploited the nonlinear dynamics theory to derive the three
wave mixing method and carefully examined the underlining assump-
tions for a distributed transmission line type metamaterial. Using the
system Jacobian, a time periodic equivalent circuit was proposed and
analyzed to determine the propagation properties of the autonomous
components. Through detailed numerical simulations, it was demon-
strated that three wave mixing is capable of providing accurate
magnitude and phase profiles throughout the structure, particularly for
small pump power and long transmission lines. The phase matching
condition was derived and found to agree with previous measurements
and numerical results. However, for strong nonlinearities due to a
strong pump or a short TL, where multiple reflections are expected,
nonlinear dynamics theory provides a more rigorous and reliable
framework compared to TWM to study the autonomous components.
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