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Abstract—Using the time periodic ABCD parameters, an
expression for the dispersion relation of space-time modulated
structures is obtained. The relation is valid for general structures
even when the spatial granularity is comparable to the operating
and modulation wavelengths. In the limit of infinitesimal unit
cell, the dispersion relation reduces identically to its continuous
counterpart. For homogeneous space-time modulated media,
the time periodic circuit approach allows the extension of the
well-known telegraphist’s equations. The time harmonics are
coupled together to form an infinite system of coupled differential
equations. At the scattering centres, where the interaction is
mediated via the modulation (pump wave), the telegraphist’s
equations reduce to the interaction of two waves only: the
signal and idler. The interaction can then be described using
three wave mixing, satisfying the phase matching condition. It
is demonstrated that the time periodic S parameters provide an
alternative and appealing visualization of the modal conversion
and the emergence of non-reciprocity inside the bandgaps.

Index Terms—Time Periodic, Space-time periodic, Nonre-
ciprocity

I. Introduction

The asymmetric interaction of space time harmonics in
space-time modulated media has been recently exploited to
design multitude of novel non-reciprocal devices such as
magnet-less circulators [1]–[3], nonreciprocal antenna [4]–
[6], one-way beam splitters [7], isolators via the exploitation
of the asymmetric interband transition in a photonic crystal
[8], [9], and manipulating wave transmission via a space
time modulated metasurfaces [10], [11]. Additionally, it was
demonstrated that the inclusion of time and/or space-time
periodic elements can circumvent some physical limitations
of linear time invariant systems. For instance, it was shown
that an appropriately time modulated reactance can result in
zero reflection and hence enables extreme energy accumulation
[12]. Quite recently [13], it was theoretically shown that a
system based on a time switched transmission line was demon-
strated to have a broadband matching capability not limited
by the Bode-Fano criteria [14]. Moreover, the modulation of
both the effective permittivity and permeability was shown to
enhance the nonreciprocity while still keeping the spacetime
modulated structure perfectly matched to the host environment
[15]. For a recent review on developments, applications and
methods of analysis of space-time media, please refer to [16].
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Fundamentally, the modulation of a medium constitutive
parameter by a travelling wave biases the transmission in one
direction over the other(s), resulting in a skewed dispersion
relation that cannot be achieved using space only or time only
modulation [17], [18]. The theory of space-time modulated
media dates back to the mid of last century when there was
an immense interest in the study of distributed parametric
interactions [19]–[24]. During that period, the theoretical foun-
dation was established. The framework is based on Bloch-
Floquet theory, where the variables (voltages and currents or
electric and magnetic fields) are represented by an infinite
sum of the space time harmonics. Upon the substitution of the
variables into the governing differential equation (in this case
the wave equation), the system behaviour can be expressed as
the interaction of the infinite number of space time harmonics.
Usually only few harmonics need to be considered, particularly
in the vicinity of the scattering centres [18].

Practically speaking, lumped elements are used to synthe-
size space-time modulated structures; for instance, nonlinear
elements (eg. varactors are periodically inserted in a host
microstrip transmission line [25]). The modulation is intro-
duced either using a strong pump wave on the same line or
via a special arrangement where the modulation comes from
another coupled transmission line [15], [25]. The operating
regime is generally assumed and/or designed such that the
granularity of the structure is small compared to the operating
and modulation wavelengths; hence the structure is considered
homogeneous.

Recently, it was shown that the scattering magnitude in a
space-time modulated Right Handed Transmission Line (RH-
TL) and subsequently the corresponding non-reciprocity can
be enhanced by reducing the modulation wavelength λm [18].
For a given TL length, the reduction of the λm is equivalent
to the increase of the interaction length. The analysis assumed
the homogeneity of the underlying structure. Additionally as
λm decreases so does the wavelength at the scattering centre.
Eventually, the wavelengths are reduced to the extent that
they may be just a few unit cells, raising the question about
how short the modulation wavelength can be. Usually, the
underlying medium was implicitly assumed to be RH, where
either the shunt capacitor or series inductor is modulated.

The analogy between Linear Time Invariant (LTI) and
Linear Time Periodic (LTP) circuits and systems has been
exploited to analyze time periodic systems [26]–[28]. In RF
circuits, time periodicity appears in oscillators and mixers,
where a Periodic Transfer Function (PXF) is obtained after
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the system is linearized around the steady state limit cycle
[29]. Such analogy strongly suggests that an extension of
the theory of periodic structures permits the exploration of
arbitrary spacetime structures in a very similar fashion to
that of space only periodic systems [30]. From the previous
arguments, a framework that enables the characterization of
arbitrary space-time periodic structures must be based on first
principles: Floquet theorem and basic circuit theory. Being
a circuit based approach, the granularity of the unit cells is
automatically taken into account. It is required, of course, that
the circuit based approach must reduce to the homogeneous
case for an infinitesimally small unit cells. It is the aim
of the current manuscript to develop such framework that
generalizes the theory of periodic structures of LTI systems
to enable the description of wave propagation in arbitrary
space/time/spacetime periodic structures. For limiting cases
(for instance as the modulation strength tends to zero or the
structure becomes electrically small), the derived expressions
reduce identically to their simpler counterparts.

It is worth noting that circuit based approaches have been
successfully applied to describe and design time and space
time periodic circuits. For instance, in [2], [3], [31] a circulator
was built from three identical coupled resonators, where their
resonant frequencies are temporally modulated and are 120◦

phase shifted from one another. The resonators were realized
using lumped elements, where temporal modulation is intro-
duced via varactors. In [4] a microstip line was capacitively
loaded to permit coupling to free space. The capacitances
were spatiotemporally modulated to break the symmetry be-
tween absorption and emission. The dispersion relation was
calculated using a generalized circuit formalism based on the
cascade of time periodic cells. Hence one of the purposes of
the current article is to extend such an approach to arbitrary
time, space and spacetime systems that are not necessarily
electrically short. Such a treatement permits apparently dif-
ferent structures to be described by the same machinery and
provides a unified framework capable of characterizing the
physical interactions due to the complex coupling of space-
time harmonics.

The first subsection in Section II briefly discusses the basics
of time periodic circuits to highlight the analogy with LTI
systems. Using the properties of time periodic circuits, the
dispersion relation of an arbtirary spacetime periodic circuit
is developed in subsection II-B. Additionally, under the long
wavelength approximation, the space time periodic system is
described by the extension of the well-known telegraphist’s
equations, representing space-time media by two coupled
matrix equations. In Section III two examples are presented.
The first example is a RH TL, where expressions of the
dispersion relation and wave behaviour of modulated homo-
geneous media are well understood and thoroughly described
in the literature. The wave interactions of a Composite Right
Left Handed transmission line (CRLH TL) are explored as a
second example to demonstrate the universality of the current
approach.

II. Theory

A. Theoretical Background: Time Periodic Circuits
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Fig. 1. (a) A generic time periodic circuit, consisting of an arbitrary number
of time periodic inductors, capacitors and resistors. (b) Scattering from a
generic time periodic circuit represented by the circle. The vertical dotted
line conceptually separates between ports 1 and 2.

In this subsection, we briefly discuss time periodic circuits.
It is worth noting that, although time periodic circuits have
been investigated a long time ago [26], they have recently
gained immense interest due to their intriguing properties such
as their ability to anhilate reflections using reactive loads
[12] and circumvent the Bode Fano bound [13]. Assume the
arbitrary circuit shown in Fig. 1, where some of the circuit
parameters (resistances, inductances or capacitances) are time
periodic with a period Tm, where the subscript m stands for
modulation. Although a time periodic two port network is
shown in Fig. 1(a), the analysis is readily extendible to n ports
networks. Given a general circuit as in Fig. 1(a), KVL and
KCL can be applied to describe the circuit using a system of
first order differential equations in the inductor currents and
capacitor voltages, which define the system state vector x [32].
Generally speaking, the time evolution of x is represented by
the well known state space matrix equation

ẋ = A(t)x + B(t)u(t). (1)

Due to the presence of time periodic elements in the circuit,
A(t),B(t) are real time periodic matrices determined from
the circuit topology via KVL/KCL and u is the input vector
excitation. Using Floquet theorem, for sinusoidal excitations
with frequency ω, an arbitrary state xl will attain the form
[33], [34].

xl(t) = p(t)eiωt + c.c, (2)

where p(t) = p(t + Tm) is a periodic function and c.c stands
for the complex conjugate. Since p(t) is periodic, (2) can be
written as

xl(t) =

∞∑
k=−∞

Pkeiω̃k t + c.c, (3)

where Pk is the amplitude of the kth harmonic of p(t) and
ω̃k ≡ ω + kωm. According to this notation, input frequency
ω = ω̃0, and hence ω and ω̃0 are synonymously used hereafter.

Substituting (3) back in (1) and noting that x represents
currents and voltages, the coefficients of the pth harmonic can
be matched, resulting in a system of linear algebraic equations.
The time periodic elements embedded in A and B couple the
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pth harmonic with other time harmonics. In the limiting case
of linear time invariant (LTI) systems, the time harmonics are
decoupled, allowing the state space variables to be determined
at any given frequency ω, with no knowledge of the behaviour
at other frequencies. For the general time periodic case, there is
an infinite number of such equations (a set for each frequency
ω̃p). Practically, only a few such harmonics are necessary to
characterise performance. For instance if one is interested in
the behaviour at the fundamental frequency ω̃0, the first finite
time harmonics 2N + 1 (|k| ≤ N) need only be considered,
where N is usually small (1, 2 or3).

To elucidate the general approach, a simple circuit that
consists of one shunt time periodic capacitance is analysed.
Not only does it provide insight into the process, but also
demonstrates how the concept of divide and conquer is ap-
plied, where complex systems can be divided into simpler
cascaded subsystems. This concept is very useful in describing
space-time periodic circuits, as will be shown in the next
subsection. The current through the time periodic capacitance
C̃ is given by

i(t) =
d
dt

C̃(t)v(t). (4)

The periodicity of C̃(t) allows its expansion in a Fourier series

C̃(t) =

∞∑
k=−∞

Ckeikωmt. (5)

Since C̃(t) is real, Cq = C̄−q. Furthermore using (3), both v(t)
and i(t) can be written as

v(t) =

∞∑
r=−∞

Vreiω̃r t + c.c and i(t) =

∞∑
r=−∞

Ireiω̃r t + c.c (6)

Substituting (5) and (6) in (4), and matching the exp (iω̃rt)
yield

Ip =

∞∑
l=−∞

iω̃pCp−lVl =

∞∑
l=−∞

Yp−lVl, (7)

where Yp−l ≡ iω̃pCp−l can be interpreted as the admittance
connecting the lth harmonic voltage with the pth harmonic
current. In another words, the pth harmonic current is the sum
of all currents due to all harmonic voltages. Defining the time
periodic current and voltage as the infinite-dimensional vectors
I =

[
· · · , Ip−1, Ip, Ip+1, · · ·

]t
and V =

[
· · · ,Vp−1,Vp,Vp+1, · · ·

]t
,

(7) can be compactly written in a matrix form as

I = YV = iΩCV, (8)

where Y is the time periodic admittance, Ω is a diagonal
matrix storing all harmonic frequencies ω̃k and C is the
time periodic capacitance matrix. Similar expressions for time
periodic inductors and resistors can be obtained [26], [28].
As time harmonics go from −∞ to ∞, where 0 labels the
fundamental frequency, it is convenient to number the rows
and columns of the matrices with reference to the fundamental
component. According to this notation, the 0th row denotes the
fundamental component.

If a time periodic capacitance is connected in shunt between
input and output terminals, the structure forms a two port
network, where at ω̃p the input voltage and current (V1 and

I1) are related to the output values (V2 and I2) by the ABCD
parameters, V1

I1

 =

[A] [B]

[C] [D]


V2

I2

 , (9)

where [A], [D] are the identity matrices, [B] is the zero matrix
and [C] (not to be confused with the capacitance matrix C) is
the matrix where its (m, n) element is given by Cm,n = Ym−n.
The time periodic ABCD matrix is a generalization of the
well-known ABCD matrix of LTI systems. In Ref. [26],
equivalent voltages and currents were used to assure that the
ABCD matric is frequency independent. Unlike Ref. [26],
different type of elements can be included in the ABCD
matrix. Depending on the circuit configuration, some circuit
parameters can be more convenient than others. For instance,
shunt (series) elements are naturally represented by the Y (Z)
parameters. The conversion process between different sets of
parameters parallels that of LTI systems [35].

Generally, each parameter is an infinite dimensional square
matrix (hence the inner brackets), but practically only few
harmonic need to be considered. In the subsequent analysis,
for simpler notation, the inner brackets will be dropped.
For a time periodic system, the conventional S-parameters
(S 11, S 21, S 12 and S 22) are extended to four matrices. The S11
represents the reflection coefficients at port number 1, when
port 2 is terminated in the reference impedance. For instance,
with reference to Fig. 1(b), consider an incident wave with
frequency ω and complex amplitude a0. S (r,0)

11 a0 represents the
wave bouncing back at port 1 in the rth harmonic. Similarly,
S (r,0)

21 a0 is the wave transmitted to port 2 in the rth harmonic.

B. Space-time Periodic Structures

The analysis in subsection II-A is general for time periodic
systems. However sometimes, a system is also periodic in the
spatial domain, forming a travelling wave modulation. This
can result, for instance, from the linearization of nonlinear
distributed structures [36] or the Distributedly Modulated
Capacitance technique [25]. In this subsection, we will extend
the time periodic circuit approach discussed in the previous
section to space-time periodic structures.

Fig. 2 shows a hypothetical space-time periodic structure,
where the modulation, regardless of it source, is represented
by a travelling wave G(t − x/νm), where νm is the wave front
velocity. Accordingly, the wave front travels a unit cell length
p in p/νm units of time. The wave G can be the modulated
capacitance, inductance or resistance. Generally, the spatially
modulated elements are placed p units apart or at x = np,
where n is an integer. There can be any number of modulated
elements per unit cell, for instance a shunt capacitance or both
capacitance and inductance of a right handed transmission line
as in [15]. In this case there will be a travelling wave G(t −
x/νm) for each modulated element and all travel with the same
speed νm. Any travelling wave G can then be written as

G(t − x/νm) = G(t′), (10)
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where t′ = t−x/νm. G(t′) is periodic with a period Tm, therefore

G(t′) =

∞∑
r=−∞

Gr exp(ir[ωmt − βmx]), (11)

where βm ≡ ωm/νm is the modulation wave number. In
the long wavelength approximation, the exact positions of
the modulated elements and the distance between them are
irrelevant as long as p is much smaller than the operating
and modulation wavelengths. We seek a general solution
that satisfies the Bloch-Floquet condition (2) and (3), but in
t′ = t − x/νm. Therefore, the harmonics components of vn+1 (
in+1) and vn (in) are related by

Vn+1 = PsVn, (12)

where Ps is diagonal with Prr
s = exp (−iβ̃r p) and β̃r ≡ β + rβm

is the wave number of the rth harmonic. Ps can be thought of
as the spatial (hence the s subscript) propagator; it relates the
voltage and current at x = (n + 1)p to those at x = np.

G (t − x/νm) G (t − [x + p]/νm)

nth (n + 1)th

p

+x

 
 
 
 

 
 
 
 

 
 
 
 

Fig. 2. An arbitrary space-time periodic structure with a unit cell of p units
of length. The wiggly arrows emphasize the modulation in the spatial domain.

1) Generalized Dispersion Relation: Using (12) the disper-
sion relation can be determined from the solution of

F(ω, β) ≡

∣∣∣∣∣∣∣∣
A B

C D


Ps 0

0 Ps

 −
I 0

0 I


∣∣∣∣∣∣∣∣ = 0, (13)

where generally ω and β are complex.
The dispersion relation above relies on the evaluation of

an infinite determinant. In practice however, a finite set of
harmonics only will be used. It is thus critical to determine
the minimum number of harmonics necessary to accurately
represent the harmonic interactions. As was previously shown
for a right handed medium, whenever the modulation and
medium speeds are sufficiently close (the sonic regime), higher
harmonics with significant magnitudes always exist [22]. From
a numerical procedure point of view, (13) may be solved for ω
or β using an initial number of harmonics. (i.e, iThe number
of harmonics can then be increased until the relative change
in ω or β and the amplitude of the higher harmonics are
below some prescribed values [23]. It is worth noting that (13)
is mathematically equivalent to finding non-trivial solutions
for an infinite system of homogeneous algebraic equations
in infinite unknowns. A sufficient condition for an infinite
determinant to converge (i.e, have a finite value) is that the
sum of the off-diagonal components and the product of the
diagonal elements are both absolutely convergent [37]–[39].
Infinite determinants arise in situations intimately related to

the structures studied here. In fact, it first appeared in Hill’s
original work in lunar motion, which resulted in periodic
differential equations [40], [41]. This is not surprising since an
infinite set of algebraic equations emerges directly whenever
the Bloch-Floquet condition is imposed. For a generic system
with arbitrary unit cell configuration as well as modulation
properties (such as speed and wave shape), it may be chal-
lenging to determine whenever a given determinant converges.
For an indepth description of systems of infinite equations in
infinite unknowns please refer to [42]–[44].

It is worth noting that due to the spatial periodicity,
the (k, k − s) element of any of the sub-matrices X(n) =

A(n),B(n),C(n) or D(n) n unit cells away is related to the (k, k−s)
element of the above ABCD matrix as

X(n)
k,k−s = e−isβmnpX(0)

k,k−s. (14)

Hence, given the ABCD parameters of any unit cell, the ABCD
parameters of N cells can be determined by cascading all unit
cells A B

C D


tot

=

N−1∏
k=0

A(k) B(k)

C(k) D(k)

 (15)
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Fig. 3. One unit cell of (a) a generic time periodic TL. (b) a time periodic
TL, where the periodicity is included in the shunt element. (c) a RH TL with
a modulated C̃. (d) a modulated CRLH TL.

2) Coupled Wave Equations: Fig. 3(a) shows a circuit that
consists of repeating unit cells of arbitrary series impedance
and shunt admittance. Both elements can be time modulated.
This structure covers many interesting TL topologies [45],
[46].

In the frequency domain the circuit elements are represented
by the time periodic Z and Y matrices, as was shown in
subsection II-A. If the length of the unit cell p is small
compared to both the operating and modulation wavelengths
λ and λm respectively, the system can be described by per
unit length quantities, where generally, Z(x) = Z′(x)p and
Y(x) = Y′(x)p. Applying KVL and KCL, and in the limit of
infinitesimal p, the voltage and current can be described using
the telegraphist equations

dV/dx = −Z′(x)I and dI/dx = −Y′(x)V. (16)
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Equations (16) are general for any time periodic structures,
where Z′(x) and Y′(x) can be an arbitrary functions of x. This
means that (16) can be applied to spacetime periodic systems
as well as to time periodic systems with an arbitrary spatial
variation. By matching the boundary conditions, (16) can be
used to determine the amplitudes and phases of a given wave
and its time harmonics as they propagate through a cascade
of different media. It is worth noting that the state variables V
and I are the time harmonics at a given position x. Eqs. (16)
represent an infinite system of coupled differential equations,
where coupling arises from the time periodic modulation.

III. Results and Discussion

In Subsection A, we will use the time periodic circuit
approach to derive the characteristic equation of a synthesized
right handed transmission line (RH TL), where the length of
the unit cell can be comparable to the modulation wavelength.
In Subsection B we will shed some light on the dispersion
relation of a general TL, where the modulation is applied to the
shunt branch. Additionally, a CRLH will be closely examined.

A. RH TL Dispersion Relation

Similarly to LTI systems, a single unit cell, shown in Fig.
3 (b), can be considered as the cascade of two networks: the
series LTI inductance and the shunt LTP capacitance. HenceA B

C D

 =

I Z

0 I


 I 0

Y I

 =

I + ZY Z

Y I

 (17)

The matrices Z and Y are 2N + 1 × 2N + 1, where the −N
to N harmonics are only considered. The situation where the
temporal periodicity is applied to one element only (usually
the shunt capacitance) is very well understood and hence will
be used as our test-case in the following discussion. In this
case, the impedance matrix is diagonal,

Zkk = iω̃kL. (18)

Time periodicity appears in the Y matrix, where

Yk,m = iω̃kCk−m. (19)

For monotone modulation C̃ = C0 (1 + M cos (ωt − βmnp)).
Therefore, Ck,k = C0, Ck,k±1 = MC0/2 and Ck,s = 0 otherwise.
Substituting (18) and (19) in (17), and using (13), one arrives
at the system of homogeneous equations

eiβm pVk+1 + e−iβm pVk−1 +
2
M

1 − (
2 sin β̃k p/2
ω̃k
√

LC0

)2 Vk = 0, (20)

where k = 0,±1,±2, · · · . The system of equations (20) is
valid for an arbitrary modulation wavelength. The dispersion
relation is determined from the non-trivial solution of (20).
When the modulation wavelength is considerably larger than
the unit cell, i.e, βm p � 1 and operating in the range where
the structure is homogeneous (i.e, β̃k p � 1), 2 sin β̃k p/2 ≈ β̃k p
and (20) reduces to

Vk−1 + Vk+1 +
2
M

1 − (
β + kβm

ω + kωm
c
)2 Vk = 0, (21)

where c ≡ limp→0 p/
√

LC0 is the speed of the homogeneous
TL. It is convenient to normalize the wave-numbers and
frequencies to be multiples of the modulation wavelength
λm ≡ 2π/βm. Therefore, the above equation reduces to

Vk−1 + Vk+1 +
2
M

1 − (
βλm + 2πk

Kλm + 2πνk

)2 Vk = 0, (22)

where K ≡ ω/c, the wave number of the unmodulated TL,
ν ≡ νm/c. Equation (22) is identical to the one derived for a
modulated homogeneous medium. The circuit approach shows
that such relation is only valid under the long wavelength
approximations:

βm p � 1, β̃k p � 1. (23)

When the above two conditions are not satisfied, one should
resort to (20). This may be necessary in practical scenarios,
where the TL is synthesized from finite unit cells. Fig. 4 shows
the dispersion relations calculated using (20) and compared to
(21) in the limit M → 0. In this case, the dispersion relation
of a general TL, determined by (20), reduces to

2 sin β̃k p/2 = ±pω̃k/c (24)

Additionally, the dispersion relation for a homogeneous TL is
calculated from (21) as

β̃k = ±ω̃k/c (25)

As illustrated in Fig. 4, the scattering centers are shifted down
in frequency due to the bending of the dispersion curves,
where 2 sin β̃k p/2 deviates from β̃k p. Bending is associated
with the reduction of the group velocity, which is equal to the
energy flow velocity [47]. In turn, the energy flow velocity
is directly proportional to the Bloch impedance. As frequency
increases, the Bloch impedance decreases (can be attributed to
an increase in the equivalent capacitance of the TL), resulting
in a reduction in energy flow. The bending of the dispersion
curves is particularly observed when βm p becomes large and
is exhibited more in higher harmonics β̃k = β + kβm, k ≥ 1.
The scattering frequencies represent the intersection of two
curves given by the above equation. For instance, the first
Anti-Stokes’ (backward) center [18] is determined from the
intersection of the negative branch of the 0th curve with the
positive branch of the +1 curve, which are given by

sin (β + 2π) p/2 + sin βp/2 = πνp, and K p = −2 sin βp/2.
(26)
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Fig. 4. Dispersion Relation for ν = 0.3, M → 0, using the time periodic
circuit and long wavelength (homogeneous) approximation.

To examine the behaviour for macroscopic unit cells, the
dispersion relations (20) and (21) are solved for different λm

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2020.2985712

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 6

-1 0 1
0

0.2

0.4

0.6

0.8

1
K

m
/

0 10 20
0

0.2

0.4

0.6

0.8

1

Circuit

Circuit

(a)

-1 -0.5 0 0.5 1

m
/

0

0.2

0.4

0.6

0.8

1

0 25 50
(m

-1
)

0

0.2

0.4

0.6

0.8

1

Circuit

Circuit

(b)

-1 0 1

m
/

0

0.2

0.4

0.6

0.8

1

K
m

/

0 50 100

(m
-1

)

0

0.2

0.4

0.6

0.8

1

Circuit

2X2

2X2Circuit

(c)

4 6 8 10 12 14 16

m
/p

20

40

60

80

100

m
ax

(m
-1

) Homogeneous

Circuit Model

(d)

Fig. 5. Dispersion Relation for ν = 0.3, M = 0.5, using the time periodic
circuit and long wavelength (homogeneous) approximation. (a)λm/p = 16, (b)
λm/p = 8, (c) λm/p = 4, (d) maximum α.

values when ν = 0.3 and M = 0.5. The results are reported in
Fig. 5, where the Anti-Stokes’ center is only considered. Inside
the bandgap, the incident wave number become complex:
β − iα, where α is the attenuation constant. As λm decreases
the scattering center is shifted to a lower frequency value, as
expected from the bending of the dispersion curves (Fig. 4).
Since the scattering center is the intersection of the 0th and
1st harmonics, the system of equations (20) can be reduced to
the 2 × 2 secular equation∣∣∣∣∣∣∣∣ D0 eiβm p

e−iβm p D+1

∣∣∣∣∣∣∣∣ = 0, or D0D+1 = 1. (27)

The position and strength of the Anti-Stokes’ center are
calculated using (26) and (27) as shown in Fig. 5 (c). The
2×2 system accurately predicts the frequency of the scattering
center. However, it slightly over estimates the value of the
attenuation constant. It is worth noting that, formally, (27) has
been employed to study wave propagation and radiation from
modulated surfaces [48], [49].

Additionally, Fig. 5 (d) shows that even when λm becomes
just a few unit cells long, α is still inversely proportional to
λm. This implies that, given a fixed modulation speed νm,
the insertion loss is directly proportional to the modulation
frequency and such a relation is valid even when λm is just few
times larger than p. It is worth noting too that the behaviour
for macroscopic unit cells solely depends on the bend of the
dispersion curves. The coefficients exp (−iβm p) and exp (iβm p)
appearing in the off-diagonal terms in the 2 × 2 determinant
(27) have no influence. They only affect the phase difference
between the 0th and +1st harmonics.

To verify the behaviour for small λm values, a time domain
analysis of the transmission line is performed using a state
space model (SSM) [50]. In this case, a finite number of unit
cells is used, KCL and KVL along with the circuital relations
are applied in the time domain, resulting in the system of
ordinary differential equations (ODEs) (1). The ODEs are
solved using Runge-Kutta method, hence SSM enables the
solution of arbitrary circuits in the time domain (regarded in
this aspect as a transient solver) [32]. From the computed
time domain voltages, the magnitude and phase of the time
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Fig. 6. (a) Attenuation constant α calculated at the normalized frequency Ka =
π(1− ν) using the dispersion relation and state space model. (b) Amplitude of
incident and scattered signals near the Anti-Stoke’s scattering center calculated
using SSM. The arrows indicate the direction of propagation of the modulation
and the +1 harmonic.

harmonics at each node are calculated using a fast Fourier
transform. Fig. 6 (a) shows α calculated using SSM and secular
equation (13) at the Anti-Stokes’ center (Ka = π(1 − ν)) for
different values of λm/p. As λm/p decreases, α increases.
Fig. 6 (b) shows the amplitude of the incident and scattered
waves superimposed on the modulation wave. The modulating
wavelength is four unit cells. The incident wave attenuates as it
propagates through the structure due to the scattering in the +1
mode that bounces back toward the source. Furthermore when
λm/p = 4, the normalized frequency at which the maximum
attenuation occurs is shifted from 0.7π to 0.66π due to the
bend of the dispersion curves (Fig. 4). At this frequency the
SSM predicts αmax to be 99.57 m−1, very close to the value
predicted by the 2 × 2 secular equation (αmax = 98.12 m−1).

1) Time periodic S parameters: Instead of the dispersion re-
lation, the circuit model presents another complementary view
of the interaction process that may lead to non-reciprocity.
Given the number of stages, the total ABCD matrix can be
calculated using (15), from which the scattering parameters
are obtained. It is worth noting that the spatial modulation
is only used to modify the appropriate terms in the ABCD
matrices as given by (14). The time periodic S parameters
are shown in Fig. 7. Noting that S (0,0)

21 (S (0,0)
12 ) represents the

scattering in the forward (backward) direction, it is clear that
the isolation occurs in the bandgaps, where the transmission
coefficients are significantly reduced. The S (r,0)

11 parameters
show that, inside the forward bandgap, scattering occurs at
the −1 harmonic as expected (1st Stokes’ centers) [18], [23].
Additionally, scattering in the +1 harmonic occurs for the
backward interaction (1st Anti-Stokes’ center). Moreover, there
is another interaction at the 2nd backward scattering center due
to the coupling between the fundamental signal and its second
harmonic.

Similarly to LTI systems, the scattering parameters can
be used to estimate the dispersion relation. Ignoring the
inhomogenity in the Bloch impedance due to the finite length
of the TL and scattering in time harmonics, the forward
(backward) transmission coefficient S (0,0)

21 (S (0,0)
12 ) assumes the

form S (0,0)
21 = exp

(
[−αF − iβF]L

)
(S (0,0)

12 = exp
(
[−αB − iβB]L

)
,

where L is the TL total length. Therefore knowing S (0,0)
21

(S (0,0)
12 ), enables the estimation of αF and βF (αB and βB).
Fig. 8 shows the estimated α and β for 100 unit cells.

Qualitatively, the S parameters can be used to estimate the
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position and width of the bandgaps. It is, however, not as
accurate as the dispersion relations (13). This is mainly due to
the inhomogenity of the Bloch impedance inside the bandgap
resulting from the increased scattering in time harmonics.
Additionally, the finite number of unit cells used to calculate
the S parameters inevitably adds to the inaccuracy of the
estimation.

-2 -1 0 1 2

 
m

/

0

0.5

1

1.5

2

K
m

/

0 25 50 75

 (m
-1

)

0

0.5

1

1.5

2
S param.

S param.

Fig. 8. (Left) Dispersion Relation calcuated using the secular equation (13)
and the time periodic S parameters. (Right) Attenation constant calculated (13
and S parameters.

2) Coupled Wave Equations of spacetime periodic RH TL:
The time periodic telegraphist’s equations (16) are readily
applicable to the RH TL, where the shunt capacitance is space-
time modulated. The telegraphist equations can be combined
to produce the second order matrix equation

d2V/dx2 = Z′Y′(x)V, (28)

which represents the interaction of an infinite number of
waves. To illustrate the usefulness of the coupled wave rep-
resentation (28), the interaction of the fundamental with its
+1 harmonic is analyzed. Such interaction is significant at the
Anti-Stokes’ scattering center [18], [23].

For monotone modulation, using (18) and (19),

d2V0/dx2 = − (ω/c)2 V0 − (ω/c)2 (M/2) eiβm xV1 (29)

and

d2V1

dx2 = −

(
ω + ωm

c

)2 M
2

e−iβm xV0 −

(
ω + ωm

c

)2
V1 (30)

If V0 = A0 exp(−iβx) it follows that V1 = A1 exp(−i
[
β + βm

]
x);

implying that the harmonics satisfy the phase matching con-
dition. Substituting these expressions back in (29) and (30)
results in a secular equation in ω and β(

2
M

)2 1 − (
βλm

Kλm

)2 1 − (
βλm + 2π

Kλm + 2πν

)2 − 1 = 0, (31)

identical to (27) under the long wavelength approximation.

B. General Ladder TL

In this subsection, we demonstrate how the dispersion
relation (13) can be applied to a generic TL that is formed
of unit cells consisting of series and shunt impedances as
shown in Fig. 3(b). Such a structure covers the RH TL
studies in the previous subsections and the composite right
left handed (CRLH) TL presented in Fig. 3(d). The time
periodicity is assumed to be purely sinusoidal and added
to the shunt admittance only. Such a restriction simplifies
the mathematical treatement and allows one to focus on the
propagation properties of systems with the generic unit cells
depicted in Fig. 3(b). The sinusoidal modulation permits the
reduction of the dispersion relation to the three term recursion
relation [51], [52]

AkVk+1 + BkVk + CkVk−1 = 0, (32)

where the coefficients Ak ≡ Zk,kYk,k+1 exp (iβm p), Bk ≡

Zk,kYk,k + 4 sin2 β̃k p/2 and Ck ≡ Zk,kYk,k−1 exp (−iβm p), and the
phase of the modulation is taken such that Yk,k−1 = Yk,k+1.
Eq. (32) is the generalized form of (20). Unlike (22), first
appeared in [22], [23] for a RH media, (32) is applicable to
arbitrary unit cells and to situations where the unit cell length
cannot be ignored. If modulation is not purely sinusoidal then
(32) becomes a 2N + 1 recursion, where N is the number
of significant modulation harmonics. It may be challenging,
however, to find an analytical closed form expression for
an arbitrary 2N + 1 recursion relation. Fortunately, the three
term recursive relation (32) can be reduced to the canonical
form yk+1 + yk−1 − Dkyk = 0, by the change of variables:
α0 = α1 = 1, αk+1Ak = αk−1Ck,∀k > 1, Vk = αkyk and
Dk = − (αk/αk+1) (Bk/Ak) [51]. Therefore, when

α2n = α2n+1 = e−i2nβm p, n = 0,±, 1, · · · , (33)

(32) reduces to the canonical form, where

Dk = −
Zk,kYk,k + 4 sin2 β̃k p/2

Zk,kYk,k+1
e−iβm p(−1)k

. (34)

A sufficient condition that guarantees the convergence of the
space-time harmonics expansion is the existence of some N
such that for all n > N, |Dn| > 2 [48] . As was previously
shown, for the three term recursion, the infinite determinant
(13) can be reduced to a continued fraction expansion.

As a typical example, consider the CRLH TL shown in
Fig. 3(d). Here the time periodicity is introduced via the
modulation of the shunt capacitance CR. The balanced con-
figuration where the shunt and series resonances are equal
(ωse = 1/

√
LRCL = ωsh = 1/

√
LLCR) is assumed to hold in
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the absence of the time periodicity. Since CR mainly impacts
the right hand regime, Yk,k−1 is taken to be 0.8Yk,k; hence
making the interaction of space-time harmonics in the left
hand regime observable. Additionally, the circuit components
(CR,CL, LR, LL) are chosen such that ωse = ωsh = 1 a.u. The
modulation frequency is set to 1.2 (a.u), just above ωse and
βm p = 0.7. These values guarantee that the main branch (r = 0)
and the r = ±1 branches intersect in both the left and right
hand regimes (Fig. 9(a)). The continued fraction expansion
approach is used to calculate β for any given frequency ω. The
continued fraction is calculated using Euler-Wallis recursive
relation [53]. Twenty five harmonics are included to assure
the convergence of the continued fraction expansion. However
a much lower number of harmonics is sufficient, since the
continued fraction rapidly converges.

Figs. 9(a) and (b) depict the calculated real and imaginary
parts of β, respectively. The forward (backward) direction is
defined to be βmRe(β) > 0 (βmRe(β) < 0). In Figs. 9(a)
and (c), βm is taken to be positive, therefore the forward
(backward) direction is equivalent to Re(β) > 0 (Re(β) < 0).
As shown, there are two main interactions in both the forward
and backward directions that result in bandgaps: (1) the usual
RH-RH bandgap, appearing between ω = 1.2 − 1.7, which
behaves very similar to the bandgap of a modulated RH TL.
It is formed due to the interaction in the RH regimes of the
r = 0 and r = −1 branches. (2) The LH-LH bandgap (of a
smaller magnitude appearing around ω = 0.7), however, is
due to the interaction of the left handed wave with its r = ±1
harmonic. To reproduce the dispersion relations, a 40 unit cells
CRLH TL is directly simulated in the time domain. The real
and imaginary parts of the wave number are estimated from the
spectrum of the time domain data. The results are presented
in Fig. 9(c) and (d).

Inside the FWD bandgaps Re(β) > 0. This means that,
unlike the RH-RH interaction, the group velocity and modula-
tion directions are contra-directed inside the LH-LH bandgap
(due to the left-handensess of the medium, group and phase
velocities have opposite directions). Therefore to observe
nonreciprocity, the excitation is applied to one side of the
medium for a RH-RH bandgap and to the other for the LH-LH
bandgap. Similar arguments apply to the backward situation.

C. General Space Time periodic Modulation

In this subsection we consider (28) for a general topology
and arbitrary space modulation. The kth time harmonic obeys

dV2
k /dx2 =

∞∑
r=−∞

Zkk(ω)Ykr(x, ω)Vr, (35)

where Zkk(ω) = Z00(ω̃k), Yk,r(x, ω) = Y0,r−k(x, ω̃k). Yk,r is in
general a function of x. Of a particular importance is the sub-
class of travelling wave modulations y(x, t) = y(x−νmt). In this
case, Yk,r(x, ω) = Ŷk,r(ω) exp (−i[k − r]βmx). Therefore seeking
a solution Vk = Ak exp (−iβ̃k x), converts (28) into a system of
algebraic equations,

∞∑
r=−∞,r,k

Z00(ω̃k)Ŷ0,r−k(ω̃k)Ar +
(
Z00(ω̃k)Ŷ0,0(ω̃k) + β̃2

k

)
Ak = 0,

(36)

(d)(c)
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Fig. 9. (a), (b) Real and imaginary of the wave number of a CRLH TL
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of the wave number using SSM.

or compactly as the matrix equation

SA = 0. (37)

The above infinite set of equations can be truncated to a finite
set such that r runs from −N to N. A non-trivial solution
can be found by forcing the determinant of S to be zero.
The determinant ∆(ω, β) is a function of the complex fre-
quency ω and/or complex wave propagation β. The harmonics
A−N , · · · , AN form a 2N + 1 complex vector space. Hence, the
solution vector A ∈ null S, or equivalently it is the eigenvector
of S that corresponds to a zero eigenvalue.

Given the input frequency ω an optimization procedure
can be applied to compute β that minimizes some norm of
∆(ω, β). However, it is crucial to point out here that the value
of ∆ scales with the number of harmonics N. To apply a
norm that does not depend on N, we exploit the fact that
∆ is the product of all eigenvalues of S. Therefore, the
minimization criterion is reduced to finding β that guarantees
min(|eigvalue(S)|) < δ, where δ is a small number taken
here to be 10−9. To demonstrate how the above procedure

Fig. 10. Space-time modulated RH media. The relative permittivity εr is
modulated by a travelling rectangular wave with a duty cycle ρ. The wiggly
arrows inside the media depicts the spacetime harmonics exp i(ω̃rt − β̃r x).

can be applied to a particular scenario, consider the RH
media shown in Fig. 10. The relative permittivity of a RH
medium is modulated by a rectangular travelling wave, where
εr changes from εr to εr(1 + M). The duty cycle ρ controls the
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strength of the higher harmonics. While keeping ρM fixed, as
ρ decreases, the amplitudes of the higher harmonics relative
to the fundamental increase [54]. The Fourier coefficients are

ε̃rq =

εr(1 + ρM) q = 0
i Mεr

2πq

(
e−i2πρq − 1

)
otherwise.

(38)

Noting the analogy between a RH media and a RH TL, (36)
can be written as
∞∑

q,k

iM
1 + ρM

1 − ei2πρq

2πq
Aq+

1 − 1
1 + ρM

(
βλm + 2πk

Kλm + 2πνk

)2 Ak = 0.

(39)
For sufficiently small ρ (i.e, ρq � 1), the coefficient of Aq

becomes independent of the mode number q.
Figure 11 presents the simulation results when ρ = 0.1

and for two different values of M and N. For the lowest
order bandgaps, both in the forward and backward direction,
the N = 16 calculation provided slightly higher values of α
due to the coupling with higher harmonics. The calculated
values were in a very good agreement with Finite Difference
Time Domain (FDTD) simulations. More interestingly is the
behaviour near the second order bandgap, arising from the
interaction of the main branch (q = 0) with the second
order branch (q = +2). It is clear that a purely sinusoidal
approximation of the modulation (using N = 1) underestimates
both the gap strength and width. This is mainly due to the
neglection of the second harmonic that considerably interacts
with the main branch; particularly for small ρ values, where
the modulation higher harmonics cannot be ignored. Although
N = 16 was used to compute the dispersion relation in Fig. 11,
it is sufficient to use N = 2 inside the second order bandgap
since the interaction is mainly with the second harmonic. Fig.
12(a) presents the amplitude of the fields of the fundamental
harmonic and its two higher harmonics (ω+ωm and ω+ 2ωm)
calculated inside the modulated media using FDTD. Although
the fundamental harmonic interacts with its ω+ωm harmonic,
its main interaction is with the second harmonic, agreeing with
the dispersion relation in Fig. 11. Amplitude reductions of
more than 40 dB cannot be directly computed from the FDTD
simulated data due to limited dynamic range of the FDTD
method [55]. Therefore, α is calculated by fitting the peaks
of the amplitudes to an exponential function. Additionally, the
computed spectrum of the scattered field and the eigenvector
when the frequency is in the middle of the second bandgap
(Fig. 12(b) and (c), respectively) further strengthen this impli-
cation. It is worth noting that inside the second order bandgap
the dispersion relation can be approximated by a 3× 3 system
of linear homogeneous equations in A0, A1, A2. The main
interaction between the fundamental and second harmonic
results in an active in-elastic scattering. Nevertheless, there
is a non-vanishing interaction with the first harmonic, as Figs.
12(a) and (b) show and verified by the calculated eigenvector
presented in Fig. 12(c). After approx. 5λm, the fundamental
and second harmonics magnitudes are significantly decayed,
leaving the effect of the first harmonic dominant in the far
end. It was shown in [23] that for sinusoidal modulation the
attenuation inside the bandgaps decreases as the order of the
bandgap increases; therefore limiting parametric conversion

to the +1 harmonic only. As demonstrated here however,
nonsinusoidal modulation enables the strong interaction with
higher order harmonics, which potentially can be harnessed to
provide strong parametric conversions to higher harmonics.
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IV. Conclusion
A circuit formalism for time periodic circuits is used to

determine the dispersion relation of an arbitrary space-time
periodic stucture. The relation is valid even when the length
of the spatial periodicity is comparable to the modulating
and operating wavelengths. In this case, the scattering centers
are shifted to lower frequencies due to the bending of the
dispersion relation. For infinitesimal unit cells, the relation
retains the formula that was perviously derived for homo-
geneous media. Additionally, the system can be described
by a generalized telegraphist’s equations. Generally, the time
harmonics are coupled by the time periodic circuit elements.
The circuit based approach permits the use of S parameters
to describe scattering and modal conversion in different time
harmonics.
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[10] Y. Hadad, D. L. Sounas, and A. Alù, “Space-time gradient metasurfaces,”
Phys. Rev. B, vol. 92, p. 100304, Sep 2015.
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