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Abstract 
Although most engineers are trained to think and reason in both the time and frequency 

domains, Scattering (S) parameters are most often considered as frequency domain 
entities with little reference to their time domain picture. In this paper, it is shown that S 
parameters as represented in the time domain offer a complementary perspective that 
unfolds effects that appear combined in the frequency domain, thanks to the uncertainty 
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principle, a fundamental property of the time and frequency domains representations. To 
enable the discussion, we step back to highlight the physical meaning of the S parameters 
and the role of the reference impedance. It is emphasized that S parameters are physical 

quantities independent of whether they are represented in time or frequency. We present 
the behavior of the S parameters in the time domain for simple discontinuities that appear 
in a typical high speed interconnect (pad capacitance, via inductance, etc.). One important 
application where the time domain picture emerges is time domain reflectometry (TDR). 

Therefore, we show how the TDR or instantaneous impedance can be calculated from the 
S parameters and shade some light on the limitations of the frequency domain data that 
may affect the calculation accuracy. Finally, the 2X Automatic Fixture Removal method 
is explored, where the pivotal role of the time and frequency pictures becomes evident. I 

hope the discussion, examples and applications will motivate engineers to develop their 
understanding and exploit the time domain representation to debug complex systems and 
create novel fixture extraction algorithms that suit their needs. 
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Introduction 
 
For every Signal Integrity (SI) Engineer, S parameters represent the de-facto interconnect 

model for many reasons. Firstly, they are measured directly via a Vector Network 
Analyzer (VNA), one of the most precise high frequency equipment. Secondly, they 
conceal the implementation, thus making their exchange between design team members 
and with customers and vendors convenient. Thirdly, most commercial Full wave 

simulators and EDA tools either produce or accept S parameters files (commonly known 
as Touchstone, or SnP files).  
 
Despite the ubiquitous use of S parameters in both industry and academia, they come 

with their own subtlety. For example to many engineers, the role of the reference 
impedance and impedance re-normalization are unclear. The role of impedance can be 
particularly confusing to engineers who design and characterize systems that operate in a 
host environment with an impedance different from 50 Ohm. This is especially true for 

designers of video systems and those involved in the design of packages and PCBs with 
interconnect impedances other than the conventional 50 Ohm.   
 
One of the purposes of this paper is to re-introduce S parameters to SI engineers in a 

tangible way that establishes the connection with the physics of the system (i.e., circuit or 
interconnect). To reach this goal, we briefly discuss in the next section linear time 
invariant (LTI) systems and how their behaviors are fully described by the impulse 
response or equivalently the transfer function. We then extend the discussion to multiport 

networks (Single ended and differential traces are concrete examples). This generic 
approach leads in a natural way to a better appreciation of how the system behavior 
transcends the representation, whether it is in time or frequency. To make this pivotal 
concept clear, we draw an analogy between transformation of 2D vectors and LTI 

systems.  
 
Equipped with the conceptual description of a LTI system, the S parameters are defined 
in such a way that they represent the network intrinsic properties. The meaning of the 

reference impedance and impedance normalization follow naturally. Furthermore, we 
show how the S parameters are represented in the time domain. 
 
To better illustrate the physical meaning of the S parameters, Return and Insertion losses 

are calculated in both the time and frequency domains for simple lumped elements. 
Additionally, the intimate connection between S parameters in time and the instantaneous 
impedance, commonly known as the “TDR” is highlighted.  
 

 
Besides the computation of instantaneous impedance (i.e., TDR), the time and frequency 
representations of the S parameters find applications in fixtures extraction. Hence, in this 
paper we show how the combination of both the time and frequency representations 

enables the extraction of interconnects’ S parameters. Although there are various time-
frequency fixture extraction methods, we limit the presentation to the elegant 2X-
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Automatic Fixture Removal (2X-AFR) method. Readers interested in other techniques 
can refer to Ref. [1]. 
 

Physical meaning of S parameters 
 
Fundamentally, the physics of most electrical systems is captured by a set of linear 
equations. Indeed, the relations between voltage and current for the building blocks of 

circuits (resistors, capacitors and inductors) are described by linear algebraic or 
differential equations. Deeper under the surface, the behavior of all electric systems 
obeys Maxwell’s equations that are nothing but a set of four differential “linear” 
equations. Furthermore, circuit elements and materials are time invariant, meaning that 

the parameters (resistance, capacitance, inductance, permittivity, permeability, etc.) do 
not change with time. This implies that electric systems usually belong to the class of LTI 
systems.  
 

 

 
Figure 1. Examples of multiport networks. 

 
Fortunately, LTI systems have general properties that make their description relatively 
easy. To show this, consider the single port in Figure 1(a). The network can represent any 

combination of circuit elements (capacitors, inductors, microstrips, vias, etc.). As is 
already known, from the port perspective the network behavior reduces to the relation 

between the terminal voltage 𝑣(𝑡) and current 𝑖(𝑡). Linearity of the network implies that 
𝑣(𝑡) and 𝑖(𝑡) are linearly related.  For instance if  𝑖(𝑡) is amplified five times, 𝑣(𝑡) is 

amplified by the same factor. Additionally, the voltage 𝑣(𝑡) due to an input current 
source 𝑖(𝑡) = 𝑖1 (𝑡) + 𝑖2(𝑡) is the sum of the voltages due to 𝑖1(𝑡) and 𝑖2(𝑡) separately. 
Therefore, from a terminal voltage and current perspective, the network (or generally a 

system) linearly maps the current waveform to a voltage waveform.  It is crucial to note 
that this mapping is a property of the system not the input.  
 

To reveal the nature of the mapping between 𝑣(𝑡) and 𝑖(𝑡), we refer to the simplified 

model in Figure 2. 𝑣(𝑡) and 𝑖(𝑡) are considered as vectors in the plane. The mapping 
from 𝑖(𝑡) to 𝑣(𝑡) is represented by the 2 × 2 matrix Z. For a current vector 𝑖(𝑡) in the 

plane (or equivalently a given current waveform), the matrix Z transforms 𝑖(𝑡) into 𝑣(𝑡). 
It is well known that for a wide class of matrices there is some coordinate system (𝑒1, 𝑒2) 

that permits the operation of Z to be simplified. Indeed, any vector pointing in the 𝑒1 or 
𝑒2  directions will be scaled but still point in the same direction. For example, the 𝑒1 

component of  𝑖(𝑡) is compressed while the 𝑒2 component is elongated. These directions 
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are known as the eigenvectors of Z. They are characteristic directions of the matrix Z. 

The eigenvalues of Z quantify the scales along 𝑒1and 𝑒2. 
 
Keeping the above analogy in mind, the characteristic directions of a LTI system are the 
sinusoids. Indeed if the input to a circuit is a sinusoid, the output is still a sinusoid, albeit 

a change in magnitude and phase. Mathematically, this change in magnitude and phase is 
represented by a complex number, which is the eigenvalue corresponding to the given 

sinusoid. Each sinusoid is identified by its frequency 𝑓. The eigenvalue 𝑍(𝑓) at 
frequency 𝑓, is nothing but the system transfer function.  
 
The above arguments clearly show that it is convenient to use the frequency domain 

when characterizing circuits. Of course, this does not come as a surprise to an electrical 
engineer. Loosely speaking, the frequency domain is equivalent to aligning the 
coordinates’ axes in the LTI system preferred directions hence rendering the analysis 
much simpler.  In this “coordinate system” the effect of Z reduces to mere number 

multiplications: 
 

𝑉(𝑓) = 𝑍(𝑓) × 𝐼(𝑓). 
 
 Another more human friendly representation is time. Humans find it easier to reason and 
think in terms of sequences of events in the time domain. Although devices and 

interconnects may be characterized in the frequency domain, ultimately performance is 
evaluated in time. Consider for example a communication channel, where symbol 
streams are transmitted from one end to another. Eventually, performance is assessed 
using time domain parameters such as Symbol Error Rates, Channel Operating Margin 

(COM) … etc. If the coordinate system is “aligned” in the time coordinates (equivalently 
we choose the (𝑥, 𝑦) coordinates in Figure 2), the network behavior reduces to the 
convolution operation: 

𝑣(𝑡) = 𝑧(𝑡) ∗ 𝑖(𝑡), 
 

where 𝑧(𝑡) is the inverse Fourier transform of 𝑍(𝑓). 
 
The above discussion can be extended to multiport networks; for example the two port 

network shown in Figure 1. In frequency, the terminal voltages are related to the currents 
by the well known 𝑍 parameters 
 

𝑉1 (𝑓) = 𝑍11(𝑓)𝐼1(𝑓) + 𝑍12(𝑓)𝐼2(𝑓) 
and 

𝑉2(𝑓) = 𝑍21(𝑓)𝐼1 (𝑓) + 𝑍22(𝑓)𝐼2(𝑓). 
 
Or equivalently in time as 

𝑣1(𝑡) = 𝑧11 (𝑡) ∗ 𝑖1 (𝑡) + 𝑧12 (𝑡) ∗ 𝑖2(𝑡) 
and 

𝑣2(𝑡) = 𝑧21(𝑡) ∗ 𝑖1(𝑡) + 𝑧22(𝑡) ∗ 𝑖2(𝑡). 
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The relation between 𝑖1 (𝑡) and 𝑖2(𝑡) from one side and 𝑣1 (𝑡) and 𝑣2(𝑡) from the other, is 
a system property that does not depend on the inputs. 
 

 
 

 
Figure 2. A simplified 2D model of the single port network. 

 

 

S parameters  
In this section, we show that the S parameters represent a system property. This has two 
important implications (1) they do not depend on the input and (2) they are, very much 

like the 𝑍 parameters, transcend their representation. Time and frequency domains 
emphasize complementary facets of the parameters. 
 

From their name, S parameters describe an electric circuit using the strength of scattering 
and transmission of incident waves that impinge the system. Such description is clearly 
understandable when one characterizes microwave circuits. In this case, the inputs are 
usually waves propagating in waveguides that lead to the system. On the other hand, 

interconnects convey signals from a transmitter to a receiver. Usually the signals strength 
are defined by their peak or peak to peak voltages. Therefore, a description in terms of 
voltages and currents is convenient. Nevertheless, at high baud rates, communication 
systems resemble microwave circuits and it is practical to exploit the extensive toolset a 

microwave or antenna engineer uses. Accordingly, a SI engineer deals with the two 
aspects: (1) voltages and currents more common in circuit design, and (2) waves naturally 
appearing in microwave networks. Hence, it is important to assimilate the two 
perspectives.    
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Figure 3 Electric network connected through its ports to a measuring instrument (VNA) via an ideal cable. (a) Single 

Port. (b) Two Port. 

 
Unfortunately, many times S parameters are introduced as mere mathematical constructs 

that mimic waves appearing on guided structures. Clearly, as will be shown, S parameters 
represent real physical quantities that exist even at very low frequency and DC. Consider 
for example a Device Under Test (DUT) as the one shown in Figure 3(a) or an 
interconnect as in Figure 3(b).  In both cases, we assume that the electric network is 

attached to a VNA via ideal cables. For the interconnect example, the cables on the left 
and right sides do not have to be the same, i.e, 𝑍01 not necessarily equals to 𝑍02. Instead 
of focusing our attention of the voltage and current at the terminals (circuit design 

perspective), we consider the voltage and currents at the cables some distance 𝑙 from the 

ports (microwave circuits perspective). As 𝑙 becomes smaller (approaching the ports), 𝑣 
and 𝑖 approach those at the terminals. It is well known that between the conductors of the 
cables the electric and magnetic fields appear as the superposition of the cable modes 

moving in the forward and backward directions [2]. Although a cable supports infinite 
number of modes, only the Transverse Electromagnetic (TEM) mode propagates at all 
frequencies. If the cable dimension is small enough, other modes are below their cut-off 
frequency and do not propagate [3] [4]. This means that the fields on the cable are 

reduced to those of the TEM mode only. Additionally, a TEM mode can be rigorously 
described by voltage and current quantities. This is not true for general waveguides that 
do not support TEM modes (for instance hollow waveguides). Moreover, the voltage and 
current of a wave travelling in some direction (forward ‘+’ or backward ‘-‘) are related by 

a constant quantity: the cable characteristic impedance 𝑍0. The impedance depends on the 
cable internal structure and material. Accordingly, the voltage and current on the cable 

can be written down as 
 

𝑣 = 𝑣+ + 𝑣− 
and 

𝑖 =
𝑣+

𝑍0
−

𝑣−

𝑍0
. 

Note that the current of the backward wave is negative, emphasizing the fact that power 

is flowing in the negative direction (away from the network). In terms of 𝑣 and 𝑖, the 
amplitudes of the waves can be written as  
 

𝑣+ =
𝑣 + 𝑍0𝑖

2
 

and 
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𝑣− =
𝑣 − 𝑍0𝑖

2
. 

 
The network determines the relative strength of the forward and backward waves. To see 
this consider the single port network in Figure 3(a). At the port the impedance, a system 
parameter that can be represented in frequency and time, relates the voltage and current. 

Therefore, 
 

𝑉−(𝑓) = 𝛤(𝑓)𝑉+(𝑓), 
where  

𝛤(𝑓) =
𝑍(𝑓) − 𝑍0

𝑍(𝑓) + 𝑍0
 

 

is the reflection coefficient. In the time domain, the relation takes the form 
𝑣−(𝑡) = 𝛾(𝑡) ∗ 𝑣+(𝑡), 

 

where 𝛾(𝑡) is the reflection coefficient in the time domain and is equal to the inverse 

Fourier transform of 𝛤(𝑓).  
 
In general, the S parameters represent the relation between the incident and scattered 
waves appearing on the transmission lines (TLs) attached to the network ports. They 

represent a system property much like the 𝑍 parameters, but with a caveat: they also 
depend on the transmission lines. Changing the TLs, changes the fraction of reflected to 
incident waves. However, the network must fix their sum. This means that regardless of 

the TLs impedances, the S parameters will always produce the same intrinsic network 

parameters (𝑍, 𝑌, 𝐴𝐵𝐶𝐷 𝑒𝑡𝑐.). Moreover, knowing the S parameters for a given set of 
connecting TLs permits the calculation of the parameters for any set of TLs, which is 
nothing but impedance renormalization. 
 
For a two port network the S parameters in the time domain take the form 

 
𝑣1−(𝑡) = 𝑠11 (𝑡) ∗ 𝑣1+(𝑡) + 𝑠12(𝑡) ∗ 𝑣2+(𝑡) 

 

and 
𝑣1−(𝑡) = 𝑠21(𝑡) ∗ 𝑣1+(𝑡) + 𝑠22(𝑡) ∗ 𝑣2+(𝑡), 

 

where 𝑠𝑚𝑛(𝑡) is the inverse Fourier transform of 𝑆𝑚𝑛(𝑓). Physically 𝑠𝑚𝑛(𝑡) is the 
waveform appearing at the mth port due to an incident impulse wave that impinges the nth 

port.  
 
The strength of combining the time and frequency domains relies mainly on a 
fundamental property that links the two domains: the uncertainty principle. This is the 

same principle known in physics as the “Heisenberg uncertainty principle”. In simple 
terms: localized events in time appear spread in frequency and vice versa. The widths of 

signals in time ∆𝑡 and frequency ∆𝑓 are constrained by the following inequality [5]. 
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∆𝑡∆𝑓 >
1

2𝜋
. 

 
The implication of such relation is far reaching. Resonance for example is a localized 
event in frequency. Therefore, it is expected that effect of resonance sustains over a long 

period of time. On the other hand, reflection from a lumped element embedded in a host 
transmission line is localized in time; hence, its effect appears over a wide frequency 
band. To have a deeper understanding of how S parameters look like in the time domain, 
scattering from simple discontinuities is considered in the next section. 

 
 

 

S parameters for simple discontinuities 
 
In this section, we calculate the S parameters in the time domain for simple elements. The 
calculation is based on time domain arguments only. The results themselves can be 
obtained from well-known frequency domain expressions that are derived and repeatedly 
used in microwave textbooks [3] [4]. However, the purpose of the discussion is to 

highlight the route to such expressions based on fundamental circuit properties. To fix 

ideas, consider the situation of a shunt capacitance 𝐶 embedded in a trace of uniform 
characteristic impedance 𝑍0 (Figure 4). The configuration may represent a first order 
model of a pad or a connector that interfaces a coaxial cable and a PCB. 
 

 
Figure 4 Capacitor embedded in a uniform trace. 

 

To find the relation between 𝑣−, 𝑣𝑡  and 𝑣+ , we apply Kirchhoff’s laws at the 
discontinuity. Since voltage and current must be continuous, 
 

𝑣+ + 𝑣− = 𝑣𝑡 
and 
 

𝑖+ + 𝑖− = 𝑖𝑐 + 𝑖𝑡 . 
Next we use the circuit relations linking currents and voltages. Note that on the TL, the 
reference impedance relates the current and voltage to one another. Additionally,  
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𝑖𝑐 = 𝐶
𝑑𝑣𝑐

𝑑𝑡
= 𝐶

𝑑(𝑣+ + 𝑣−)

𝑑𝑡
= 𝐶

𝑑𝑣𝑡

𝑑𝑡
. 

 

Combining the circuit relations with Kirchhoff’s laws, it is straightforward to show that 
the incident and reflected waves on the line satisfy the following equation 
 

𝑑𝑣−

𝑑𝑡
+

1

𝜏
𝑣− = −

𝑑𝑣+

𝑑𝑡
, 

 

where the time constant 𝜏 = 𝑍0𝐶/2. The above equation can be solved by standard 
methods (for example Laplace transform) to give 

 

𝑠11(𝑡) = −𝛿(𝑡) +
1

𝜏
𝑢(𝑡)𝑒−

𝑡
𝜏 , 

where 𝛿(𝑡) and 𝑢(𝑡) are the standard delta and step functions [5] [6]. Note that 𝑠11(𝑡) is 
the reflected wave when the capacitor is impinged by an impulse wave. The table shown 
in Figure 5 presents the S parameters for six different discontinuities.  

 
Continuing with the shunt capacitance example, more insight is gained when the physics 

behind the different terms appearing in the expressions of 𝑠11 (𝑡) and 𝑠21(𝑡) is revealed. 
Consider the time instant just before the incident impulse 𝑣+(𝑡) reaches the discontinuity. 

At this instant, the voltage across the capacitor 𝑣𝑐  is still zero. As the impulse reaches the 

capacitor, the capacitor resists the change in 𝑣𝑐  and instantaneously acts as a low 
impedance. Hence, the wave flips and reflects back to the source. This is highlighted by 
the negative sign of the delta in 𝑠11(𝑡). Additionally, the incident very high intensity 

current charges the capacitor. Later, 𝐶 discharges through the resistance seen by its 

terminals, which is the parallel combination of the TLs 𝑍0 at the two sides of the 
discontinuity (Figure 4). Note that the cases shown in the fifth and sixth columns of 
Figure 5 are the dual of one another. This means that the situation where we have a series 
inductance is the analogue of the one discussed here. Scattering from the series 
inductance is then the decay of the magnetic field stored inside the inductance. The decay 

time constant is 𝐿 divided by the equivalent resistance 2𝑍0. Note also that the inductor 

appears as a high impedance at the initial time, this explains why 𝑣−(𝑡) has the same sign 
as 𝑣+(𝑡).  
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Figure 5 S parameters for simple discontinuities depicted in the first row. The second row present the main circuit 

relations. The third and fourth rows show the time and frequency response, respectively.  

It is worth noting that in general the transmitted wave 𝑣𝑡  leaving a discontinuity is not an 

impulse anymore. 𝑣𝑡  carries with it a signature of the discontinuity (for instance the time 
constant 𝜏). If 𝑣𝑡  hits another discontinuity down the line, the reflected signal from the 
second discontinuity will combine the signatures of both discontinuities.  

 

TDR and its relation to S parameters 
Every SI engineer considers the instantaneous impedance 𝑧̂(𝑡) as an indispensable 
parameter that unfolds the discontinuities in the time domain and provides a picture of the 
interconnect. Nevertheless for some engineers, the link between 𝑧̂(𝑡) and the S 
parameters is somehow unclear for two main reasons. Firstly, the S parameters are 

usually considered frequency domain objects, while 𝑧̂(𝑡) is a time domain quantity. 

Secondly, it is not clear how the frequency domain data affects the calculation of  𝑧̂(𝑡). In 
this section, we briefly address these two points.  
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Figure 6 Setup used to define the instantaneous impedance. 

 

Referring to Figure 6, the instantaneous impedance 𝑧̂(𝑡) is defined to be 
 

𝑧̂(𝑡) =
𝑣𝑖𝑛(𝑡)

𝑖𝑖𝑛(𝑡)
 

 

for a given source 2𝑣+(𝑡). In terms of the incident and reflected waves 
 

𝑧̂(𝑡) = 𝑍0

𝑣+(𝑡) + 𝑣−(𝑡)

𝑣+(𝑡) − 𝑣−(𝑡)
. 

 

Noting that 𝑣−(𝑡) = 𝑠11(𝑡) ∗ 𝑣+(𝑡) and 𝛿(𝑡) ∗ 𝑣+(𝑡) = 𝑣+(𝑡), the instantaneous 
impedance can be written in terms of the S parameters 
 
 

𝑧̂(𝑡) = 𝑍0

[𝛿(𝑡) + 𝑠11 (𝑡)] ∗ 𝑣+(𝑡)

[𝛿(𝑡) − 𝑠11 (𝑡)] ∗ 𝑣+(𝑡)
. 

 
 

The above expression shows how 𝑧̂(𝑡) can be calculated in terms of the S parameters for 
any input waveform 2𝑣+(𝑡).  It is worth to mention that unlike the input impedance 
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(𝑍(𝑓) in frequency or 𝑧(𝑡) in time), 𝑧̂(𝑡) depends on 𝑣+(𝑡) and hence is not a system 
property. On the other hand  
 

𝑍(𝑓) = 𝑍0

1 + 𝑆11(𝑓)

1 − 𝑆11(𝑓)
, 

 
and does not depend on the input. In general, the Fourier (or its inverse) transform of a 

fraction is not the ratio of the Fourier (or inverse) transforms of the numerator and 

denominator. Therefore, 𝑧̂(𝑡) ≠ 𝑧(𝑡). 
 
Usually the source used to calculate 𝑧̂(𝑡) is a step function (i.e., 𝑣+(𝑡) = 𝑢(𝑡)). In this 
case,  

𝑧̂(∞) = 𝑍(0), 
 
or in another words, the instantaneous impedance settles at the DC value, when the input 

is a unit step.  
 
 

 

 
Figure 7 Instantaneous Impedance (TDR) of three simple discontinuities. 

 

To demonstrate how 𝑧̂(𝑡) can be calculated for simple discontinuities, we use the 
expressions for 𝑠11(𝑡) reported in Figure 5 and the fact that for a unit step input 
 

𝑣+(𝑡) ∗ 𝑠11(𝑡) = ∫ 𝑠11(𝑡′)𝑑𝑡′

𝑡

0

 

to calculate 𝑧̂(𝑡) using the expression for the instantaneous impedance. Figure 7 shows 
𝑧̂(𝑡) for three different discontinuities. 
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Calculating 𝑧̂(𝑡) from the frequency domain Data 
 

In a real world setting, an expression for 𝑠𝑚𝑛(𝑡) will not be available. In this case, 𝑠𝑚𝑛(𝑡) 

is calculated from its frequency counterpart 𝑆𝑚𝑛(𝑓) via the use of inverse Fourier 
transform. It is worth to briefly highlight the effect of the limited frequency domain data 
on the computed 𝑠𝑚𝑛(𝑡). The first limitation results from the absence of the DC point. As 

has been already discussed, the DC point determines the steady state value of 𝑧̂(𝑡).  
 
The hardware resources used to measure or simulate the S parameters will usually limit 

the maximum frequency 𝑓𝑚. This implies that the time domain data is smeared by a sinc 

window of a width 2/𝑓𝑚 .  Hence, discontinuities that are sufficiently close (the distance 
between them is of the order of 𝑐/𝑓𝑚) will not be resolved by the TDR. Furthermore, 

small 𝑓𝑚 values may lead to a non-causal behavior.  
 

The third and last limitation is due to the resolution or step frequency 𝑓𝑟 . If 𝑓𝑟  is not small 
enough, aliasing my occur leading to meaningless 𝑠𝑚𝑛(𝑡). 
 

2X Automatic Fixture Extraction 
Automatic Fixture Extraction (AFR) is a technique that intelligently exploits both the 
time and frequency representations to enable the extraction of fixture network parameters 
[1] [7]. Consider the setup shown in Figure 8. Let us assume that the return loss of a DUT 
needs to be measured. The DUT, usually a chip, is soldered to a PCB trace. The other end 

of the trace is connected to the VNA via a suitable coaxial interface. It is assumed that the 
VNA is calibrated at the coaxial interface. The structure between the coax interface and 
the DUT is known as the fixture. It can be a simple single or differential trace or may 
include lumped elements needed to bias and place DUT in the appropriate setting. The 

presence of the fixture modifies the measured return loss. Instead of measuring the DUT 

return loss 𝛤𝐷𝑈𝑇 , we end up measuring 𝛤𝐷𝑈𝑇 combined with the fixture S parameters i.e.,  
 

𝛤𝑚𝑒𝑎𝑠 = 𝑆11 +
𝑆21

2 𝛤𝐷𝑈𝑇

1 − 𝑆22𝛤𝐷𝑈𝑇
. 

 

Therefore in order to determine 𝛤𝐷𝑈𝑇, the fixture S parameters 𝑆11, 𝑆21and 𝑆22 must be 
calculated at each frequency of interest. This process is known as fixture extraction.  
 
There are different fixture extraction algorithms. The simplest and most direct one is the 

SOL (Short, Open, Load) method. In this method, three separate fixtures are fabricated 
such that three different terminations, usually an open, a short and a reference termination 
(load) replace the DUT.  The three independent measurements allow the extraction of the 

unknown quantities (𝑆11, 𝑆21 and 𝑆22).  
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Figure 8 A typical setup used to measure the RL of a DUT. 

 
Another approach that will be discussed in more detail is 2X AFR. A test coupon, which 
is the fixture cascaded with its mirror image is fabricated (Figure 9). The coupon is 
symmetric at the mid plane, where the DUT is supposed to be mounted in the original 

fixture. A full two port (or four port if the fixture is differential) measurement of the test 
coupon is performed using a VNA that has been calibrated at the coaxial interfaces. 
Hereafter, the S parameters of the original fixture (the 1X structure) and those of the 2X 
coupon will be denoted by a 1X and 2X superscripts, respectively.  

 

Using basic circuit theory, the 1X S parameters 𝑆11
1𝑋 ,𝑆21

1𝑋 and 𝑆22
1𝑋can be determined from 

the measured 2X ones 𝑆11
2𝑋 ,𝑆21

2𝑋  and 𝑆22
2𝑋. However, their relations are complex and 

finding the unknown parameters can be quite challenging. As will be seen, a combination 
of the time and frequency domain pictures provides an elegant procedure that decouples 
the different parameters and permits a direct calculation. 

 
 
 
 

 
Figure 9 2X structure used to extract the fixture S parameters. 

 

Thinking in terms of the time domain and noting that the 2X structure is symmetric, one 

can conclude that 𝑠11
1𝑋(𝑡) is equal to 𝑠11

2𝑋 (𝑡) up to the middle plane. Furthermore, 𝜏𝑑 is the 
duration of the round trip between the applied impulse and the instant when the reflected 
wave from the mid plane is observed. Again, due to the structural symmetry, this is equal 

to the instant when 𝑠21
2𝑋 (𝑡) appears at the output of the 2X structure.  Therefore, the first 
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step in the extraction process is to convert 𝑆21
2𝑋 (𝑓) to the time domain and compute the 

time 𝜏𝑑 at which 𝑠21
2𝑋 (𝑡) starts to appear as shown in Figure 10.  

 
 

 
Figure 10 The insertion loss of the 2X structure as it appears in the time domain.  

 

The next step is to calculate 𝑠11
2𝑋 (𝑡) and set 𝑠11

1𝑋 (𝑡) to be 
 

𝑠11
1𝑋 (𝑡) = 𝑠11

2𝑋 (𝑡) × [1 − 𝑢(𝑡 − 𝜏𝑑)]. 
 

Note that 𝑠11
1𝑋 (𝑡) calculated above is the reflection coefficient when the termination is the 

impedance 𝑧𝑒𝑛𝑑 at the end-point where the DUT is mounted. Hence, 𝑠11
1𝑋(𝑡) and 

consequently 𝑆11
1𝑋 (𝑓) is the reflection coefficient when the DUT side is terminated by 

𝑧𝑒𝑛𝑑. Once 𝑆11
1𝑋 (𝑓) is determined, the two other parameters are computed using the 

frequency domain representation, i.e.  

 

𝑆22
1𝑋(𝑓) =

𝑆11
2𝑋 (𝑓) − 𝑆11

1𝑋(𝑓)

𝑆21
2𝑋  

and 

𝑆21
1𝑋 (𝑓) = ±√𝑆21

2𝑋 (𝑓)[1 − (𝑆22
1𝑋 )2], 

 

where the right sign of 𝑆21
1𝑋(𝑓) is resolved by enforcing the phase to be a decreasing 

function of frequency. So far, the extracted parameters 𝑆11
1𝑋, 𝑆21

1𝑋 and 𝑆22
1𝑋 are normalized 

to 𝑧𝑒𝑛𝑑 at the DUT side. The value of 𝑧𝑒𝑛𝑑 can be computed from the instantaneous 
impedance value 𝑧̂(𝜏𝑑). Impedance re-normalization is performed to reference S 
parameters to the nominal impedance (usually 50 Ω) as Figure 11demonstrates. 
 

 

 
Figure 11 Impedance renormalization. 
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Up to this point, the procedure was limited to two ports. For high speed circuits, 
differential (2 Inputs, 2 Outputs) fixtures are ubiquitous. Fortunately, the 2X AFR 
process described above can be adapted to differential fixtures as shown in Figure 12.   

 
 

 
Figure 12 Treating a four port network as two separate two port networks: differential and common mode. 

The four port 2X measurement (S4P) is converted to two differential and common mode 
parameters (S2P) such that 

 

𝑆𝐷𝐷 =
1

2
𝑃𝑡𝑆𝑃 

and 

𝑆𝐶𝐶 =
1

2
𝑄𝑡𝑆𝑄, 

where  

𝑃 = [

1 0
−1 0
0 1
0 −1

] 

and 

𝑄 = [

1 0
1 0
0 1
0 1

]. 

 

The differential and common mode S parameters 𝑆𝐷𝐷
2𝑋 and 𝑆𝐶𝐶

2𝑋 are two ports and the 

procedure described in the current paper can be applied to both of them to extract 𝑆𝐷𝐷
1𝑋 

and 𝑆𝐶𝐶
1𝑋 that are combined back to form the 1X four port S parameter as Figure 12 shows. 

 
An example that demonstrates the use of the 2X AFR method is shown in Figure 13. 
Here a circuit model is built from different transmission line sections and lumped 

elements. The ABCD parameters of the fixture are computed over the frequency range of 
interest by multiplying the ABCD matrices of each segment. Additionally, the 2X ABCD 
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parameters are produced from the fixture parameters. Both parameters are then converted 
to four port S parameters. 
 

 
Figure 13 A circuit model of a typical differential interconnect that consists of different transmission line sections and 

lumped elements. The coupling between the pair is modeled using the mutual inductance M.  

 
The 2X AFR procedure is applied to the 2X S parameters. The extracted 1X S parameters 
are shown in Figure 14 where they are compared to the ones calculated analytically.  

 
 

 
Figure 14 Differential S parameters of 1X fixture. 

 
Figure 14 demonstrates the accuracy of the 2X AFR extraction procedure.  
 

Conclusion 
S parameters are re-introduced in the current paper to emphasize the fact that they 
represent the physical properties of an electrical network as probed at its ports. The 
approach taken here distinguishes between a property and its representation, whether it is 

in time or frequency. The S parameters in the time domain are calculated for simple 
discontinuities to motivate engineers to reason and think in terms of the time domain. 
Additionally, the relation between S parameters and TDR is discussed and the 
instantaneous impedance for simple discontinuities are derived. The effect of limited 

frequency domain data on the instantaneous impedance is briefly presented. Furthermore, 
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we give an overview of how the time and frequency pictures furnish an elegant procedure 
to extract the network parameters of a fixture. Finally, the extraction procedure is applied 
to a fixture and results are compared with the analytical calculations. 
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