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Abstract—The properties of space-time modulated media op-
erating in the sub-sonic regime are discussed based on rigorous
Bloch-Floquet theory. A geometrical description in the frequency-
wavenumber plane is developed to provide insight into the
possible interactions and their nature. It is shown that the secular
equation has a singularity, which results in a weak/passive second
harmonic generation process. Additionally bandgaps arising from
the strong/active parametric interaction between an incident wave
and its space-time harmonic, result in an inelastic Brillouin like
scattering process. Hence when the incident frequency is inside a
forward (backward) bandgap, a Stokes’ (Anti-Stokes’) scattered
wave bounces back to the source. Although the forward and
backward bandgaps do not generally occur at the same frequency
bands, the insertion loss and gap width are equal. Requiring
that both gaps do not overlap, enforces a lower bound on the
modulation speed. It is shown that although an increase in the
modulation index is desirable, as it enhances the non-reciprocal
behaviour, it also limits the range of possible modulation speeds.
It is shown that an alternative way to enhance the nonreciprocity,
whenever the modulation index is constrained, is through the
reduction of the modulation wavelength. The effective complex
refractive index is calculated over a wide frequency range.
It is shown that peaks appear in the extinction coefficient,
indicating scattering to Stokes’ and Anti-Stokes’ waves. Finally, a
comprehensive numerical analysis based on the Finite Difference
Time Domain method is developed to verify and demonstrate the
intriguing properties of space-time modulated media.

Index Terms—Periodic structures, Distributed parameter cir-
cuits, Active circuits, Microwave photonics, Time-varying sys-
tems, Multiwave mixing, Optical harmonic generation, Disper-
sion, Metamaterials, Electromagnetic propagation, Finite differ-
ence methods.

I. INTRODUCTION

THe study of space-time modulated media sparked interest
in the late 1950s and early 1960s in the exploration of

the properties of travelling wave parametric amplifiers [1]–
[6]. In these systems, a strong wave (the pump) modulates a
system parameter; for instance a varactor-loaded transmission
line can be space-time modulated via the introduction of a
strong pump wave that modulates the capacitance value in both
space and time. A general solution of the system is determined
by a wave and all its infinite space-time harmonics as dic-
tated by the Bloch-Floquet Theorem. Traditionally whenever
the modulation index is significantly small, the propagation
behaviour can be explained using the parametric interaction
of two waves: the signal and idler. This is equivalent to
truncating the space-time harmonics expansion to two terms
only. This approach, also known as three wave mixing, is
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widely used to describe nonlinear behaviours in optical media,
such as parametric generation and inelastic scattering [7],
[8]. In an early work, Slater pointed out to the common
features between space-time modulated media and scattering
from crystals [9]. Recently we showed that the dynamical
behaviour of a sinusoidally pumped nonlinear composite right
left handed transmission line (NL CRLH TL) resembles a
Stimulated Brilliouin Scattering process observed in crystal
structures [7], [10].

Despite the success of three wave mixing in describing
scattering in nonlinear optical media, its general application
to any modulated media may lead to inaccurate results. For
example Oliner et al showed that, whenever the speed of
modulation is close enough to the speed of the unmodulated
medium (in a dispersion-less medium), the full Bloch-Floquet
modes must be used [4]. They based their arguments on a
rigorous mathematical framework that they developed earlier
to describe wave propagation in the presence of a spatially
modulated surface reactance [11]. Very recently we showed
that for a NL CRLH TL, three wave mixing does not provide
accurate results for strong nonlinearity and/or the TL is
relatively short [12].

Quite recently there has been renewed interest in space-
time modulated structures for their non-reciprocal behaviour.
It has previously been shown that the dispersion relation of a
medium loses its symmetry once it is space-time modulated.
In this case, waves travelling in the forward and backward
directions do not necessary have the same wave number (i.e
βF (ω) 6= −βB(ω), F and B stand for forward and back-
ward propagation, respectively) [5]. However, such intriguing
behaviour has not been exploited until recently. For instance
to obtain an optical isolation in one direction, non-reciprocity
was introduced via the space-time modulation of the refractive
index of a photonic crystal [13]. This imparts frequency
and wave number shifts during a photonic indirect interband
transition. The transition is made possible in a given direction
by allowing the space-time modulation to phase match the fre-
quencies and wave number of the incident wave and a crystal
mode. This is equivalent to saying that both photons energy
and momentum are simultaneously conserved. By properly
choosing the length of the crystal to be equal to the coherence
length, efficient transfer from the incident wave to its space-
time harmonic can be made possible. In the opposite direction
of propagation, however, the phase matching conditions are
not satisfied; hence a photonic transition does not occur and
propagation is not disturbed. The non-reciprocity via inter-
band transition can be induced using an electrically driven
photonic crystal [14].
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Using the metamaterial paradigm, space-time modulation
was also exploited to introduce non-reciprocity on the meta-
atomic level scale by mimicking Faraday’s rotation. This was
achieved by lifting mode azimuthal degeneracy in a ring
resonator via the space time modulation of the dielectric
constant [15]. The modulation frequency ωm allows the clock
and anti-clock modes to resonant couple. The coupling pro-
cess, analyzed by coupled mode theory [16], is mediated by
the modulated dielectric constant. As a result, the coupled
(hybridized) modes are different in character and as a con-
sequence non-reciprocity arises.

In essence, the introduction of space-time modulation biases
the system, leading to an asymmetric coupling of the space-
time harmonics, which results in the non-reciprocal behaviour.
This property was recently utilized to break time-reversal
symmetry. Such property was exploited to design a multitude
of interesting devices; for example: non-reciprocal leaky wave
antenna [17], [18], circulators [19], [20], isolators [21] and
potential novel devices such as metasurfaces [22].

In the context of an elastic media, it was shown that by
properly choosing the modulation speed, a strong interaction
of the space-time harmonics can be enabled; this results
in the creation of a directional band-gap in one direction,
while leaving propagation in the reverse direction intact [23].
The directional bandgap identifies a strong active parametric
interaction [4], [5].

In the current article, we derive, based on the rigorous
theoretical framework developed by Oliner et. al [4]–[6]
and recently applied in the context of nonreciprocal media
[21], [24], closed form expressions of important parameters
that directly affect the non-reciprocity of modulated media.
First, the bandgap width, for both forward and backward
modulation is calculated. Second, the optimal range of the
modulation speed is specified, which strongly depends on
the trade-off between the modulation index and the speed
of the modulation. We also report a closed form expression
for the insertion loss and explicitly show the dependency on
different system parameters. Although the analogy between
space-time modulated media and scattering from crystalline
structures had been discussed by Slater in an early work
[9], the analysis carried out here exploit the metamaterial
paradigm to establish the firm connection between space-time
modulated media and inelastic Brillouin Scattering. Hence,
we compute the complex refractive index, and harmonics
wave impedances to show their behaviour whenever scattering
occurs. Along the way, we examine the harmonic interactions
from very low frequency values up to the bandgaps, both in the
forward and backward directions. A geometrical description of
a quantity that correlates with the strength of coupling with the
space-time harmonics is constructed in the k − β plane. The
systematic analysis reveals a resonance like interaction due to
a singularity in the secular equation. Finally, a detailed FDTD
analysis is developed to verify and demonstrate the intriguing
properties of space-time modulated media.

In section II a generalized dispersion relation is derived
for an arbitrary space-time periodic medium. For subsequent
discussions, the dispersion relation is simplified by consider-
ing the fundamental harmonic of the modulation wave only.

Fig. 1. A space-time modulated medium.

The analogy to Brillouin scattering is pointed out and the
scattering centres are identified. Section III describes in detail
the scattering mechanism in both the forward and backward
propagation directions, the width of the bandgap as well as the
insertion loss in the center of the gap are also estimated; the
effect of the inelastic scattering on the extinction coefficient is
also demonstrated. In section IV we provide a detailed FDTD
analysis to verify the theoretical analysis.

II. SPACE-TIME DISPERSION RELATION

Here we will consider the case where the dielectric constant
is modulated in both space and time as a travelling wave of
the form ε(z, t) = ε(z − νmt), where νm is the modulation
speed taken in the +z direction. The analysis and derivations
follow the rigorous treatment of early works by Oliner et.
al and Cassedy [4]–[6], [25]. Due to its importance and
relevancy to the current analysis, a detailed derivation of the
dispersion relation is presented in this section. Not only is
it necessary for nomenclature and completeness, but it also
shows the intimate connection with Brillouin Scattering and
forms the foundation for finding expressions which describe
the nonreciprocal nature of the structure. ε can be expanded
in terms of its Fourier harmonics

ε = ε0

∞∑
n=−∞

ε′n cos(nωmt− nβmz), (1)

where ωm and βm are the temporal and spatial modulation
frequencies, and are related to the modulation speed νm as:

νm =
ωm
βm

. (2)

Seeking an x polarised TEM solution for the wave prop-
agating along the z axis (Fig. 1), the wave equation can be
written as

∂2Ex(z, t)

∂z2
= µ0

∂2ε(z, t)Ex(z, t)

∂t2
. (3)

The disturbance ε(z, t) in (3) is periodic in both time and
space, hence we can apply Bloch-Floquet theorem to express
the solution as a propagating wave E0 exp(−j[ωt − βz])
modulated by a space-time periodic function P (ωmt− βmz);
where ω and β are the yet to be determined frequency and
wave number. The periodic function P can in turn be written
as an infinite Fourier series:

P (ωmt− βmz) =
∞∑

r=−∞
are
−jr(ωmt−βmz). (4)
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Therefore, the general solution assumes the form:

Ex(z, t) =
∞∑

r=−∞
are
−j[(ω+rωm)t−(β+rβm)z], (5)

where the arbitrary constant E0 is absorbed in ar [25].
Substituting (5) and (1) in (3); and noting that cos θ =
(exp(jθ) + exp(−jθ))/2, a recursion relation between the ar
terms can be found to be

∞∑
s=1

ε′s (ar−s + ar+s) + Fr(k, β)ar = 0, r ∈ Z (6)

where

Fr(k, β) = 2

(
1−

[
βa+ 2πr

ka+ 2πνr

]2)
, (7)

a = 2π/βm the wavelength of the modulation, k is the
unmodulated wave number (k = ω/c), c is the speed of the
unmodulated medium; and ν = νm/c is the relative speed
of the modulation. (6) represents an infinite system of linear
algebraic equations that couple the rth space-time (Floquet)
mode to all other modes. To find the dispersion relation for a
given k (β), a secular (or characteristic) equation is obtained
by setting the determinant of the infinitely countable system
(6) to zero; hence the corresponding β (k) can be calculated.
When vm = 0, F−r(k,−β) = Fr(k, β). Therefore the system
of equations (6) is invariant under the reflection of r (r ⇒ −r),
which means that if (k, β) is a solution to the characteristic
equation so does (k, −β) and the modulated medium is
reciprocal. However for a general νm 6= 0, this is not the
case and the medium is intrinsically non-reciprocal.

In practical situations, the expansion (1) can be truncated
to the fundamental component (ωm and βm) only, which
simplifies (6) to

ar+1 +Drar + ar−1 = 0, (8)

for r ∈ Z and

Dr =
Fr(k, β)

M
=

2

M

[
1−

(
βa+ 2πr

ka+ 2πνr

)2
]
, (9)

where M = ε′1/ε
′
0 is the modulation index [4]. The modulated

media then couples the rth Floquet mode with its nearest
neighbour (+1 and -1 harmonics) only.

Formally, a rigorous continued fractions approach was de-
rived to determine the dispersion relation [4], [5]. Expressing
the ratio ar/ar−1 as a continued fraction and noting that
ar/ar−1 = (ar−1/ar)

−1, the secular equation can be cast
into the form of a continued fraction form [4], [5]

Gr(ka, βa) ≡

Dr −
1

Dr−1 − 1
Dr−2− 1

. . .

− 1

Dr+1 − 1
Dr+2− 1

. . .

= 0. (10)

It is worth noting that Gr(ka, βa) = G0(ka + 2πνr, βa +
2πr), which means that the dispersion relation can be fully
obtained from any of the infinite Gr(ka, βa) and they are

all compatible. Additionally, the relative amplitudes of the
harmonics ar can be written as a partial fraction [4], [11]

ar
ar−1

=
−1

Dr − 1
Dr+1− 1

. . .

. (11)

The effect of Dr can be best understood by referring to
(8); when Dr is significantly large (i.e, M is small), the rth
harmonic vanishes. Therefore, the inverse of Dr indicates the
strength at which a signal couples with its rth harmonic.

For infinitesimally small M → 0, the equations (8) decouple
and the dispersion relation reduces to

MDr = 0⇒ β + rβm = ± (ω + rωm) /c, (12)

the dispersion relation of the unmodulated medium, but shifted
by (rβm, rωm).

For each frequency ω, (10) determines the corresponding
wave number β. Therefore, the dispersion relation can be con-
structed, which is generally a function of M and ν. However
to guarantee that ar/ar−1 converges for some r > r0, it was
shown that |Dr| must be greater than 2; this is equivalent
to saying that the modulation velocity vm may not be very
close to the speed c of waves in the unmodulated medium
[4], [5]. Quantitatively ν may not be within the interval[
1/
√

1 +M2, 1/
√

1−M2
]
. Moreover, for stable operation

(all solutions bounded in time), the sub-sonic condition ν <
1/
√

1 +M2 must be met. This enforces an upper bound on
the modulation speed [6].

A. Connection to Brillouin Scattering

Equation (3) establishes the formal connection between
space-time modulation and Brillouin Scattering. However the
analogy between the two is deeply rooted and needs more
discussion. Brilliouin Scattering (BS), whether Spontaneous or
Stimulated, results from modulation of a crystal lattice electric
permittivity. A spontaneous scattering process is responsible
for light scattering, where the optical properties are unmodified
by the presence of the incident light [7]. On the other hand, the
optical properties depend on the incident light in a stimulated
scattering process.

Spontaneous Brillouin Scattering stems from the inevitable
fluctuation of thermodynamic variables, which affects the
macroscopic properties of the crystal lattice. However such
fluctuation is random, reciprocal and wide band [8]. Never-
theless, interaction is usually negligible except for a specific
crystal mode: the one that satisfies the phase matching con-
ditions [7], [8]. Additionally, the interaction is weak, with a
very small relative speed ν ∼ 1 ppm.

On the other hand in a Stimulated Brillouin Scattering (SBS)
process, the beating of an intense pump of frequency ωp and
probe (Stokes or Anti-Stokes) waves of frequency ωS results
in the enhancement of an acoustic wave of frequency Ω =
ωp − ωS , which in turn beats with the pump to reinforce the
probe. The positive feedback process causes electrostriction
in the optical medium. The process sustains since the three
waves satisfy the phase matching condition [7].
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Fig. 2. Dispersion Characteristics for a space only modulated medium (ν = 0)
(a) negligibly small values of M . The forward fundamental branch ω = βc
is highlighted. The dots represent the scattering centres where interactions are
possible. Scattering centres in the forward (backward) direction correspond to
Stokes (Anti-Stokes) centres. (b) M = 0.5; the forward fundamental branch
ω = βc is highlighted. The rectangles identify the regions of strong harmonic
scattering.

In all cases, Brillouin Scattering results from the change
of the permittivity in both space and time, which makes (3)
applicable to such cases. Space-time modulated media can then
be regarded as a Stimulated or Engineered Enhanced Brillouin
Scattering. Such an analogue behaviour was recently exploited
to describe the interaction of a longitudinal acoustic wave with
a spatio-temporal phononic crystal [26].

B. Scattering Centres

For small values of M , the dispersion relation approaches
(12). Figure 2(a) depicts the dispersion relation for a space
only modulation medium (ν = 0) and an infinitesimally small
value of M . Comparing this to Fig. 2(b), which depicts the
dispersion relation but for M = 0.5, (10), reveals that the
intersection points between the MDr = 0 lines identify the
loci of strong interactions. As will be shown, for a general
ν 6= 0 these points allow the incident wave to scatter in an
inelastic fashion and therefore will be called the Scattering
Centres. The behaviour of such interactions can be studied
by considering the interaction with the r = 0 branches only.
In the forward direction (β > 0), the intersection point of the
r = 0 branch and another arbitrary r 6= 0 branch can be found
to be

kFr a = βFr a = rπ (1 + ν) for r < 0, (13)

Fig. 3. Dispersion Characteristics for a space-time modulated medium (ν =
0.31) (a) negligibly small values of M . The forward fundamental branch ω =
βc is highlighted. The dots represent the scattering centres where interactions
are possible. Scattering centres in the forward (backward) direction correspond
to Stokes (Anti-Stokes) centres. (b)M = 0.5; the forward fundamental branch
ω = βc is highlighted. The rectangles identify the regions of strong harmonic
scattering.

where the subscript r identifies that this is the intersection with
the rth branch and the superscript F emphasises that this is
for a forward propagating wave (along +z axis). Similarly kBr
and βBr , the intersection with the backward branch is found
to be

kBr a = −βBr a = rπ (1− ν) for r > 0. (14)

For reasons that will be revealed in Section III, we call
the forward and backward scattering centres Stokes’ and
Anti Stokes’ centres, respectively. For a forward propagating
modulation, ν ≥ 0 and hence kBr ≤ kFr ; the equality holds
for ν = 0: space only modulated medium. The inequality
kBr < kFr means that the interaction in the backward branch
occurs at a lower frequency leading the medium to become
non-reciprocal. Fig. 3 presents the dispersion relation for
ν = 0.31 and two values of M : M = 0 and M = 0.5. It
is clear that kBr < kFr .

It is worth noting that for a given frequency, there is
an infinite number of wave numbers, identifying possible
modes of propagation. Hence a complete solution is the linear
superposition of all such modes. However for small M values,
the first and second branches (r = 0,±1) have the most
significant contribution. As will be seen in Section III away
from the scattering centres, only the first branch needs to be
considered. In the vicinity of the scattering centres, both the
first and second branches play a significant role.
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Fig. 4. Geometrical Description of the dispersion characteristics.

III. SCATTERING MECHANISM

In this section we describe the conversion (scattering) pro-
cess from the fundamental wave with frequency ω and wave
number β to its space-time harmonics with frequency ω+rωm
and wave number β+ rβm. The scattering behaviour depends
on the values of Dr. First, we examine the trend of Dr as a
function of the input frequency ω or the corresponding scaled
value ka. Toward this end, Dr is related to metric distances
on the ka − βa plane. Referring to Fig. 4, the distances d+r ,
between an arbitrary point (βa, ka) on the r = 0 line and the
branch of Dr = 0, r 6= 0 with a positive slope is

d+r =
|(βa+ 2πr)− (ka+ 2πνr)|√

2
=

2π|r|(1− ν)√
2

, (15)

which is obtained by substituting the coordinate (βa = ka, ka)
in the expression ka+ 2πνr− βa− 2πr and dividing by

√
2.

Similarly, the distance d−r between (βa, ka) and the branch of
Dr = 0 with a negative slope (ka+ 2πνr = −(βa+ 2πr)) is

d−r =
|(βa+ 2πr) + (ka+ 2πνr)|√

2
. (16)

Therefore,

M |Dr| =
4d+r d

−
r

(ka+ 2πrν)2
. (17)

The above Eq., together with Fig. 4, give a pictorial view
of how |Dr| depends on the geometrical metrics d+r and d−r .
It is worth noting that the metric distances d−r and d+r as
well as the derived expression of |Dr| are only valid for small
values of M and at points sufficiently away from the bandgaps,
highlighted in Figs. 2(b) and 3(b), such that the dispersion
relationβa = ka is valid. Nevertheless, the general behaviour
of Dr around the bandgaps can still be described using the
βa = ka approximation; for accurate results we resort to the
general secular equation (10). For very small values of βa
and ka, |Dr| = 2/M(1−ν2)/ν2 and is independent of r; this
means that for very low frequencies all |Dr| basically have the
same value. Nevertheless as ka increases, Dr effect is radically
different for waves travelling in the forward or backward
directions, as will be detailed in the next two subsections.
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Fig. 5. Normalized Dr as a function of the normalized frequency ka for the
forward propagation.

A. Forward direction (β > 0)
For a wave travelling in the +z direction and assuming that

propagation is mainly due to the r = 0 branch, βa = ka. Fig.
5 shows the change of Dr as a function of the normalized fre-
quency ka/2πr. For r < 0 (r > 0), as ka increases along the
r = 0 line, d−r linearly decreases (increases) and d+r remains
constant (refer to Fig. 4). Additionally, the denominator of (17)
quadratically decreases (increases). Therefore, for r > 0, the
net effect of both terms keeps |Dr| monotonically decreasing.

The trend of |Dr| for r < 0 is more dynamic; as ka
approaches the singularity at −2πrν, |Dr| increases without
bound. However, as ka increases further, |Dr| will decrease
and eventually vanish at the Stokes’ centre ka = rπ(1 + ν).
At this point the rth branch intersects the main branch (i.e,
d−r = 0) and the interaction is the strongest, as was already
shown in Figs. 2 and 3. For such cases where |Dr| attains
small values, the continued fraction in (10) has to be used
to determine βa. Otherwise, the dispersion characteristic is
determined via D0 = 0 alone, which is equivalent to the ap-
proximation used here (ka = βa). The singularity corresponds
to higher harmonic generation, where the wave interacts with
its higher harmonics only. However, this interaction is passive
and weak(for a detailed analysis, please refer to Appendix A.)

On the other hand, the interaction at ka = rπ(1 + ν)
between the fundamental and its −|r| harmonic is much
stronger. In general the first interaction (with the -1 harmonic)
is the strongest and provides the wider bandwidth. For this
reason and because it is straight forward to find closed form
expressions, we will restrict our attention to the -1 harmonic
interaction. At ka = rπ(1 + ν), D−1 is small (inset of Fig. 5)
to the extent that the dispersion relation (10) can be truncated
to

D0D−1 − 1 = 0 (18)

Letting βa = ka+ η = π(1 + ν) + η, where |η| � π(1 + ν),
η can be approximated to

η = ±jπ(1− ν2)1/2M/4. (19)

In terms of the wave number

β = k (1± jαF ) , (20)
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where

αF =
M

4

√
1− ωm

ω
=
M

4

√
1− ν
1 + ν

. (21)

Unlike (51), η is imaginary and first order in M , indicating
a strong active interaction [27]. The amplitude of the -1
harmonic can be found to be

a−1
a0

= −D0 = ±j
√

1− ν
1 + ν

≡ ±jb, (22)

which, unlike (52), does not depend on M .
Inside the bandgap the r = −1 branch has a significant

contribution to the total solution. Hence, the general solution
can be written as follows [3]

Ex = a+Ex+ + a−Ex−, (23)

where

Ex± =
(
e−j(ωt−kz) ± jbe−j([ω−ωm]t−[k−βm]z)

)
e±αF kz,

(24)
Please note that the above general solution assumes that the
contributions from other branches are ignored (ignoring the
multi-valued character of k(ω)). Noting that [3]

ω

k
= −ω − ωm

k − βm
, (25)

the characteristic impedances of the space-time medium at
frequencies ω and ω − ωm are

Z0 =
Z̄

1∓ jαF
(26)

and

Z1 =
−Z̄

1± jαF / (1− ωm/ω)
, (27)

respectively, and Z̄ = ωµ0/k is the impedance of the unmod-
ulated medium.

According to (25), the fundamental and scattered waves
have phase velocities which are equal in magnitude but oppo-
site in direction. Moreover, the sign of Z1 is negative implying
that the scattered wave is travelling in the −z direction. This
is consistent with Coupled Mode Theory predictions where
active interaction is possible between waves which have the
same magnitude of phase velocity and energy flow is contra-
directive [28]. Additionally, the phase matching conditions
automatically emerge:

ωS = ω − ωm (28)
βS = β − βm. (29)

Since the scattered wave is red-shifted (lower in frequency),
it corresponds to a Stokes’ wave, which explains why the
scattering centre was named Stokes’ centre earlier in Section
II.

Considering the situation depicted in Fig. 6, where a wave
of frequency ω impinges the modulated medium of length
d. The tangential fields Ex and Hy are continuous at the
interfaces z = 0 and z = d. Approximating the impedance of
the fundamental and +1 harmonic to Z̄ and −Z̄, respectively

Fig. 6. Simplified boundary value problem for an incident wave that is co-
directional with the modulation wave.

as shown in the Fig., the amplitude D of the transmitted wave
is found to be

D = e−αF k0d (30)

and the Insertion Loss, IL, of the modulated medium in dB is

IL = 20 log(αF kd) = 8.686
π

4
M
√

1− ν2 d
a
, (31)

which reveals interesting conclusions. As expected the atten-
uation is directly proportional to M , but decreases as the
modulation speed νm increases. It is then desirable to make
νm as small as possible. However, as will be shown in the
subsection C, νm has a lower bound determined by non-
reciprocity. Additionally, from (31) the attenuation is propor-
tional to the normalized length of the medium (normalized to
the modulation wavelength); hence suggesting that to have an
efficient scattering the modulation wavelength a should be as
small as possible. However, this might be constrained by the
lower or upper bound of νm.

B. Backward Direction (β < 0)

For the backward propagation β < 0, the Dr values along
the βa = −ka line assume the form∣∣∣∣MDr

2

∣∣∣∣ =

∣∣∣∣∣1−
(

1− ka/2πr
ν + ka/2πr

)2
∣∣∣∣∣ . (32)

Fig. 7 shows how Dr changes as a function of the input
frequency. Although the Dr trend in Fig. 7 look similar to
Fig. 5, there are some fundamental differences which do not
allow the backward propagation to be treated as the mere
dual of the forward one. First, for the forward propagation,
at the singularity ka = 2πν the interaction is with the r > 0
harmonics only. As a result, it was shown in the previous
subsection that the +1 harmonic interacts passively with the
fundamental. Additionally, it is not possible to position the
singularity at the Stokes’ scattering centre ka = π(1 + ν).
However for backward propagation, the singularity is still
at ka = 2πν. Additionally, choosing ν = 1/3 positions
the singularity at the Anti-Stokes’ centre, hence limiting the
scattering to be strictly with the r > 0 harmonics only; in
other words, power is converted to the higher harmonics only
(up conversion). (c.f. Appendix A for more details on higher
harmonic generation). Similar to the analysis of the previous
subsection, the truncated secular equation

D0D−1 − 1 = 0 (33)
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Fig. 7. Normalized Dr as a function of the normalized frequency ka for the
backward propagation.

can be solved to find the propagation constant βa = −ka+ η
at ka = π(1 − ν). Neglecting terms of order higher than η2,
η is found to be

η = ±jπ
(
1− ν2

)1/2 M
4
, (34)

identical to (19). In terms of the wave numbers

k = k0 (1± jαB) , (35)

where

αB =
M

4

√
1 +

ωm
ω
. (36)

Similarly,
a1
a0

= ±j
√

1 + ν

1− ν
≡ ±jb (37)

For small values of M , Fig. 8 shows the situation where the
modulated medium is impinged by a wave at frequency ω. It
is worth to notice that the two situations depicted in Figs. 6
and 8 represent waves which have different frequencies. In the
forward direction the wave is at a normalized frequency π(1+
ν), while in the backward direction its normalized frequency
is π(1− ν).

The backward IL takes a form identical to (31), but at a
normalized frequency of ka = π(1 − ν). This means that by
the proper selection of M and ν the medium acts as non-
reciprocal bandstop filter, where the forward and backward
stop bands can occur at different frequency ranges.

The scattered wave is an Anti-Stokes wave and the interac-
tion automatically satisfies the phase matching conditions

ωA = ω + ωm (38)
βA = β + βm. (39)

The rth harmonic impedance Zr can be expressed in terms
of the normalized frequencies and wave numbers as

Zr = Z̄
ka+ 2πνr

βa+ 2πr
. (40)

Fig. 8. Simplified boundary value problem for an incident wave travelling in
a direction opposite to the modulation.

Fig. 9. The harmonic impedance versus frequency: (a) Forward modulation,
(b) Backward modulation.

Fig. 9 presents the Zr for the fundamental and the first
harmonic calculated up to the first bandgap. For the for-
ward modulation, it is clear that the Z−1 vanishes when
ka = 2πν, corresponding to the modulation frequency ωm
and the singularity discussed in subsection III-A and Appendix
A. The vanishing of impedance re-confirms that no power
is scattered to the lower harmonics at the singularity. For
forward (backward) case, the impedance of the Stokes’ (Anti-
Stokes’) harmonic is close to Z̄ in the bandgap. Assuming that
the unmodulated medium is matched to the input and output
regions, the modulated medium is reasonably matched inside
the bandgap. Additionally, the negative sign of the Stoke’s
and Anti-Stokes’ impedances signify the back scattering of
the harmonics.

The analysis leading to (37) and (37) for the forward and
backward directions, respectively assumed that interactions
with harmonics other than the first ones are insignificant
and can be ignored. To show this, the relative amplitudes
given by (11) are determined as depicted in Fig. 10. For
frequencies below the first bandgap (in the highlighted areas),
all harmonics have small amplitudes. Inside the bandgaps only
the r = −1 (r = +1) harmonic has a significant value for
the forward (backward) case, justifying the previous analysis.
Inside the second bandgap (ka ≈ 2.5π: forward, ka ≈ 1.5π:
backward), the second harmonic has a significant amplitude
with a considerably large first harmonic amplitude.

C. Width of Directional Bandgap

The width of the directional bandgap determines the band-
width at which the medium exhibits strong non-reciprocity.
It also sets the lower bound on the modulation speed ν. To
demonstrate non-reciprocity in one direction only, the forward
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Fig. 10. The amplitude of the first few harmonics, r = ±1,±2 for M =
0.5, ν = 0.3. Bottom: Forward modulation. Top: Backward modulation.

and backward bandgaps must not overlap. Hence
∆F + ∆B

2
< 2πν, (41)

where ∆F and ∆B are the directional bandgaps in the forward
and backward directions, respectively. At the band edges
βa = π(1 ± ν) (Fig. 11). Substituting these values in the
corresponding secular equations (18) and (33), it can be found
that to second order:

∆F = ∆B = π
(
1− ν2

)1/2 M
2
. (42)

Therefore, the minimum value of ν is determined from the
inequality (41) to be

νmin = M/4, (43)

which is identical to the value determined in [23] for mod-
ulated elastic media. Therefore for optimum non-reciprocal
behaviour

M

4
< ν < 1/

√
1 +M2, (44)

the upper bound is enforced by the necessity that of conver-
gence |Dr| > 2 [4]. On one side it is desirable to increase M
to increase the IL as given by (31). However on the other side,
this decreases the range of possible values that the modulation
speed νm can attain.

D. Complex Refractive Index, ñ = n+ jκ

At an arbitrary incident frequency ω, the complex wavevec-
tor k̃ can be written as

k̃ = ñk, (45)

Fig. 11. Normalized frequency versus propagation and attenuation constants
at the vicinity of the bandgap.

Fig. 12. Refractive index and extinction coefficient of waves having nor-
malized frequency ka. (a: Forward direction. (b): Backward direction (the
real part of the refraction coefficient is negative to emphasize that the wave
is travelling in the −z direction). The dark and bright bands on top of the
extinction coefficient plots depict the situations when the medium is opaque
or transparent, respectively.

where ñ = n + jκ is the complex refractive index. The
imaginary part determines the efficiency of the power scattered
by the space-time harmonics (forward: ω − ωm, backward
ω + ωm). Using the dispersion relation (10), the refractive
index is calculated for the forward and backward directions
as shown in Fig. 12. For the calculations, 20 terms were used
to compute the continued fractions; usually four of five terms
are enough, as the continued fractions rapidly converge.

From Fig. 12, it is clear that the optical property of the
medium is non-reciprocal; absorption occurs at different input
frequencies. Additionally, the widths of the Stokes and Anti
Stokes Centres are basically the same because ∆F = ∆B as
was already determined in the previous subsection.
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Fig. 13. FDTD simulated spectra for the scattered and transmitted waves for
π(1 − ν). The modulation speed changed direction and the system exhibits
a non-reciprocal behaviour. ([0]: incident wave at ω, [-1]: ω − ωm, [+1]:
ω + ωm).

IV. FDTD ANALYSIS

To validate the theoretical findings and provide deeper in-
sight on the non-reciprocal behaviour of space-time modulated
media, FDTD was applied to the 1D problem. The space-
time dependence of the permittivity was used to modify the
update equations of the FDTD formalism to determine the
propagation and scattering behaviour of a space-time modu-
lated medium. For more details on the FDTD implementation
please refer to Appendix B. Fig. 13(a) presents the scenario
where ka = π(1 − ν) and the modulation travels in the −z
direction, In this case, the incident wave interacts with its +1
harmonic, which scatters energy back in the −z direction, as is
clear after inspecting the frequency spectrum of the scattered
field. At this point, the scattered wave is the Anti-Stokes’
wave in Brillouin Scattering. However if the modulation speed
was inverted as in Fig. 13(b), the modulation and incident
waves are co-directional. In this case, as shown in Fig. 13(b),
propagation is not disturbed and the medium is transparent.
Hence, the medium is non-reciprocal at ka = π(1 − ν), in
agreement with the analytical predictions.

To demonstrate that scattering occurs only inside the band
gap, Fig. 14 depicts three different situations, where the
FDTD algorithm was used to determine the wave propaga-
tion behaviour for an input wave of ka = 0.8π(1 − ν),
ka = π(1 − ν) and ka = 1.2π(1 − ν), when M = 0.1
and ν = 0.1. The first and last frequencies are outside the
bandgap. As expected, strong Brillouin-like scattering occurs
when ka = π(1 − ν) only, as can be seen by the amplitude
of the scattered wave at ω + ωm. For the other two out-of-
band frequencies (ka = 0.8π(1 − ν) and ka = 1.2π(1 − ν))
the medium is transparent, demonstrated by 0 dB in the
transmission spectra in Figs. 14(a) and (c).

According to Eqs. 36 and 35, the field at ω is actively
converted to the one at ωA = ω + ωm. To demonstrate
this, Fig. 15 presents the fields calculated at both frequencies.
These plots are determined from the FDTD computations, after
applying Fourier transform. The plots do indeed verify that
the conversion is exponential; the incident fields are scattered

Fig. 14. FDTD simulated spectra for the scattered and transmitted waves
for 0.8π(1− ν), π(1− ν) and 1.2π(1− ν). ([0]: incident wave at ω, [-1]:
ω − ωm, [+1]: ω + ωm).

into the ω + ωm frequency (blue-shifted), which bounces
back to the source. Additionally, the envelopes of the two
waves, determined from (36), (35) and (37) match the FDTD
calculations.

Equation (31) predicts that not only does the insertion
loss, IL, per unit length is controllable by M , it also can
be controlled by varying the modulation wavelength. If the
modulation wavelength was made much smaller than the slab
thickness, significant IL can be obtained. The controllability
through the wavelength can obviously compensate for the
limitation on M as given by the optimal range (44). In Fig.
16 the insertion loss normalized to the slab thickness d is
calculated using (31) and FDTD. Insertion losses of values
above 40 to 50 dB cannot be accurately determined via the
amplitude at the output side of the signal component due to the
limited dynamic range of the FDTD method [29]. In the Fig.
the IL using the values at the output side saturates at around
50 dB. Therefore, the IL was calculated from the FDTD data
via the slope of the local maxima and minima, which can
be fitted to an exponential curve. From Fig. 16, it is clear
that (31) accurately predicts the IL values. Additionally from
(31), the modulation speed does not significantly affect the
IL. In fact changing ν from 0.1 to 0.2 and 0.3, while keeping
other parameters appearing in (31) fixed, results in a decrease
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of IL by 1.33% and 4%, respectively. These reductions are
consistent with the theoretical prediction based on (31) (1.52%
and 4.1%).

The modulation wavelength can be possibly controlled using
the Distributedly Modulated Capacitance (DMC) technique
[19]. In this case, the dispersion characteristic of the carrier
transmission line can be engineered to achieve some specific
wavelengths that specify the modulation wavelength on an-
other coupled transmission line.

As discussed earlier, the modulation results in a bandgap,
where scattering is the strongest at the centre of the gap and
decreases until it eventually becomes zero at the band edges.
In Fig. 17 we plot the FDTD calculated insertion loss for
different input frequencies inside the gap, superimposed on
the dispersion characteristics determined by (10). As Fig. 17
shows, the insertion loss is maximum at the centre of the
bandgap and becomes negligibly small at the band edges.

V. CONCLUSION

A systematic analysis of the harmonics interactions present
in a space-time modulated medium is carried out over a
frequency range which extends from DC up to around the
bandgaps in both the forward and backward directions. It is
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Fig. 17. FDTD simulated insertion loss for different frequencies in the vicinity
of the band gap, superimposed on the calculated dispersion relation near the
band gap.

demonstrated that a passive second harmonic generation pro-
cess does occur due to the singularity in the secular equation.
However such behaviour is very weak and can be ignored.
On the other hand, bandgaps in the forward and backward
directions are created due to the active parametric interaction
of an incident wave with its space-time harmonics. In this
regime, the interaction can be described using a Brilliouin-like
scattering process. The strength of scattering from a bandgap
as well as its width were determined. To have an optimal full
non-reciprocal behaviour, the modulation speed may not be
below a certain threshold which is a function of the modulation
index. Finally FDTD was used to verify the theoretical results
and findings.

APPENDIX A: BEHAVIOUR AT THE SINGULARITY
ka = 2πνr

At the first singular point ka = 2πν, the secular equation
(10) reduces to

D0 −
1

D+1 − 1
D+2− 1

. . .

= 0, (46)

i.e, it depends on the interaction between the main branch and
the positive r space time harmonics. To find the properties and
strength of this interaction, it is assumed that at ka = 2πν,
Dr for r > 1 are large enough such that their contribution to
the secular equation can be ignored. This is consistent with
the monotonically decreasing trend of |Dr|, r > 0 (Fig. 5).
One can then solve the truncated equation:

D0D+1 − 1 = 0 (47)

to find βa, evaluated at ka = 2πν. Since βa is not very
different from its value at r = 0, it can be approximated by

βa = 2πν + η, |η| � 1. (48)

Neglecting orders in η higher than two, the truncated charac-
teristic equation (47) is reduced to

η2

[
γ2 − 1

(2πν)
2 +

2γ

(2πν)
2

]
+ η

γ2 − 1

πν
−
(
M

2

)2

= 0, (49)
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Fig. 18. Grid used for the FDTD solver. The space-time modulated media is
excited by an incident plane wave introduced at the TF/SF interface.

where γ = (ν + 1)/2ν and is always greater than one (since
ν < 1). The type of the solution is determined by the radical,
which for the case in hand, is always positive. Hence, η is real,
indicating a passive exchange of power between the wave at
normalized frequency ka = 2πν and its space-time harmonic
ka+ 2πν = 2ka [27]. This interaction corresponds to a weak
second harmonic generation. To estimate the magnitude of the
interaction (i.e, finding η), one notices that for η2 � |η|

η ≈ πν3M2

1 + 2ν − 3ν2
, (50)

a second order in M . Therefore

βa ≈ 2πν

(
1 +

M2ν2

2 (1 + 2ν − 3ν2)

)
. (51)

The ratio of the amplitude of the +1 harmonic and the
fundamental can be determined as

a1
a0

= −D0 ≈
2Mν2

1 + 2ν − 3ν2
. (52)

Substituting with the typical values, M = 0.5, ν = 0.3,
a1/a0 ≈ 0.07, a very small number. Therefore, it can be
concluded the the interaction between the fundamental and its
+1 harmonic is very weak and can be neglected in the cases
of interest. This conclusion is consistent with the dispersion
relations plotted in Figs. 2(b) and 3(b), where at ka = 2πν,
the dispersion relation is basically that of the unmodulated
medium.

APPENDIX B: FDTD IMPLEMENTATION

As depicted in Fig. 18, the medium is excited by an incident
wave travelling in the +z direction, which is applied at a
Total Field/Scattered Field (TF/SF) interface [30], [31]. To
the right of the interface is the total field region. The grid
is terminated from both sides by absorbing boundaries. The
electric and magnetic fields are polarized in the x and y
directions, respectively to guarantee that the wave propagates
in the +z direction. Taking into account the space time
variation of the dielectric constant ε, the FDTD discretized
form of Ampere’s law can be written in terms of Courant
number Sc ≡ c∆t/∆z (where ∆z and ∆t are the discretized
spatial and temporal step, respectively) as:

(Ex)
q+1
m =

εqm

εq+1
m

(Ex)
q
m − η0Sc

εq+1
m

(
(Hy)

q+1/2

m+1/2 − (Hy)
q+1/2

m−1/2

)
.

Here the superscript and subscript indicate the time and spatial
steps, respectively; η0 is the impedance of free space, and
εqm is the relative permittivity at grid point m at time q∆t.
The update equation of the magnetic field is obtained via the
discretization of Faraday’s law:

(Hy)
q+1/2
m+1/2 = (Hy)

q−1/2
m+1/2 −

Sc
η0

(
(Ex)

q
m+1 − (Ex)

q
m

)
.

The TF/SF plane is positioned between an H and E nodes.
Hence the update equation for the H node at b − 1/2 and E
node at b are amended by the following equations [30]

(Hy)
q+1/2
b−1/2 = (Hy)

q+1/2
b−1/2 +

Sc
η0
Einc
ox cos(ωq∆t)

(Ex)
q+1
b = (Ex)

q+1
b +

Sc

εq+1
b

Einc
ox cos(ω(q + 1/2)∆t + k∆x2),

where Einc
ox is the electric field of the incident wave, ω and k

are its frequency and wave number, respectively. In the above
eqns., the incident electric field is referenced to the position
b∆z (i.e, E = Einc

ox cos(ωt− k[z − b])).
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