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Nonlinear metamaterials offer a potential technology to realize applications at microwave,

terahertz, and optical frequencies. However, due to the strong and controlled nonlinearity, the wave

interactions can be quite complex. In the current article, a framework based on nonlinear dynamics

theory is developed to describe such complex interactions. This is demonstrated for the case of a

harmonically pumped nonlinear left handed transmission line through the use of bifurcation theory,

stability analysis, and linearization about the limit cycle to calculate the autonomously generated

frequencies and their spatial distributions. Higher order parametric interactions, which can be

mediated by the strong nonlinearity, are automatically included in the model. It is demonstrated

that autonomous components can be visualized in both the phase and the set of solution spaces.

The framework is general in terms of the transmission line configuration, the nature and strength of

the nonlinearity, and the number of stages. It also provides accurate results when the autonomous

frequencies are in the vicinity of the Bragg frequency. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4979022]

I. INTRODUCTION

Metamaterials are artificial materials that exhibit proper-

ties not found in nature, such as negative refractive indexes

and the propagation of left and right-handed waves.1,2 Left-

handed or Composite Right-Left handed transmission lines

(CRLH TLs) were proposed as a platform to realize metama-

terials.3,4 Due to the distributed nature of TL based struc-

tures, CRLH TLs exhibit wider bandwidths and lower losses

compared with resonance based systems. The possibility of

controlling the left and right-handed propagation properties

in such structures introduced a paradigm shift that has been

successfully applied to the design and realization of novel

devices in the microwave regime.3–7

Nonlinear (NL) optics is that branch of optics which

exploits the nonlinear properties of natural materials, with

applications such as second, third, and higher harmonic gen-

eration and optical parametric amplification.8 The nonlinear-

ity is usually due to the nonlinear response of the dielectric

polarization to the applied electric field. Nonlinear metama-
terials were introduced as a merge between the two fields:

Metamaterials and Nonlinear Optics.9–12 Due to the strong

and controlled nonlinearity, the realm of nonlinear metama-

terials opens the door for new potential applications using

the novel and intriguing properties predicted by nonlinear

metamaterials, such as backward phase matching—the so-

called nonlinear mirror.13 Additionally, the impossibility of

shock wave formation makes it possible to exploit paramet-

ric interactions to design low noise parametric amplifiers,14

particularly in frequency ranges where active devices are not

available or are impractical such as in the mm-wave and ter-

ahertz frequency bands.

Various experiments with nonlinear (NL) CRLH TLs

have reported a range of interesting phenomena, such as har-

monic, subharmonic, and parametric generation,14,15 envelope

solitons,16 and multistabilty.17 However, the presence of

strong nonlinearities makes the analysis of NL CRLH TL sys-

tems quite challenging. For example, for varactor loaded NL

CRLH TLs not only can the fundamental (pump) wave gener-

ate parametric frequencies, but also the relatively strong

higher harmonics can couple with the strong nonlinearity to

generate parametric components.16 Another challenge is the

excitation of multiple pairs of autonomous frequencies,18 mak-

ing wave mixing approaches impractical due to the need to

identify a number of unknown frequencies a priori. Moreover,

it was experimentally and numerically observed that the

autonomous frequencies might be close to the lowest Bragg

frequency.19 In this case, the wavelengths of the spontaneously

generated autonomous frequencies are comparable to the unit

cell length; hence, the effective homogeneity condition is vio-

lated and the TL behaves more like a photonic crystal.4 Based

on quasi-phase matching arguments, it was shown that the

biasing network can play a role in material polling in optics,8

which in turn has a profound effect on the values of the auton-

omous frequencies. However, unlike multi-wavelength sized

periodic poled crystals in nonlinear optical media, the nonline-

arity introduced here is contained within a unit cell and hence

microscopic (sub-wavelength) in nature.20

In this article, we establish a general framework based

on nonlinear dynamics (NLD) theory to rigorously investi-

gate the properties of NL CRLH TL structures. This is

implemented using a nonlinear state space model (SSM) for-

mulation that describes the time dependent interactions

between the various states in the system21,22

_xðtÞ ¼ f ð xðtÞ; uðtÞ Þ; (1)
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where x and u are the time varying state and excitation vec-

tors, respectively, f is some nonlinear operator, and _xðtÞ indi-

cates the time derivative of xðtÞ with respect to time t. Such

a form automatically invites the application of rigorous,

multi-disciplinary NLD theory.21,23 Nonlinear dynamics is

robust, allows the nonlinearity to be arbitrary, and is valid

for 1D, 2D, and 3D structures. The NLD based approach is

applicable to both short and long TLs, since it automatically

includes complex effects due to strong nonlinearity and/or

pump, and can be regarded as an ab-initio approach that is

directly related to the physics of the system. For almost all

the practical cases, the TL is truncated and matched to the

connected load and source. However in the presence of a

strong pump, the line characteristic impedance can be non-

uniform and time varying. Hence, reflections from both the

source and the load might strongly affect the system behav-

iour. Moreover, spatial periodicity is irrelevant to the state

space formulation since only locally applied circuit relation-

ships (Ohm’s and Kirchoff’s laws) are required to formulate

(1). Using NLD, particularly stability and bifurcation theo-

ries, it was demonstrated that the excitation of the autono-

mous frequencies, in the presence of a strong pump, is

equivalent to a bifurcation from a limit cycle to a torus in the

phase space.24 Due to the generality of the NLD approach,

this conclusion is valid for all the NL CRLH lines, regardless

of their length, nature of nonlinearity, pump strength, circuit

configuration, and dimension. For infinitely long transmis-

sion lines, the number of state variables will be infinite and

the analysis automatically reduces to the coupling of space-

time harmonics.25,26 For practical finite length structures, the

bifurcation analysis yields deep insight into the TL behav-

iour and underlying physics.

The dynamics of the bifurcation can be investigated by

considering small amplitude disturbances to the limit cycle

and then linearising the response about the limit cycle. This

linearized system is a linear time periodic (LTP or T-periodic)

SSM; it enables us to find the general solution that describes

the time evolution of fluctuations and perturbations dxðtÞ, pro-

vided that these dx values remain small compared to the limit

cycle state �xðtÞ. Traditionally, studies of the linearised

response yield insight into the stability of the nonlinear sys-

tem. Importantly, the predictions made using NLD theory do

not rely on restrictive assumptions such as a weak nonlinear-

ity, periodicity or homogenity, and structure size or topology.

In the following, Section II discusses the linearisation of

the SSM about the steady state solution (the limit cycle), where

the spontaneously generated autonomous frequencies are iden-

tified as well as their waveforms. In Section III, the relationship

between the autonomous frequencies and the stability of the

limit cycle is established. Section IV presents the results and

findings when the framework is applied to a varactor-loaded

CRLH TL. Such an analytical framework is essential for realis-

ing the potential of such structures for signal processing and

waveguiding applications at terahertz and optical wavelengths.

II. LINEARIZATION AND FLOQUET THEORY

We consider the application of NLD theory to the NL

CRLH TL structure shown in Fig. 1, consisting of a cascade

of identical unit cells based on series and shunt connected

microstrip transmission lines and discrete chip varactor

diodes. A lumped element equivalent circuit model (Fig.

1(c)) is available that accurately represents the small signal

frequency response and large amplitude nonlinearity.

The inductor currents and capacitor voltages are chosen

as the state variables to construct state vector x in (1), and

hence, the dimensionality of the NLD model (length of vector

x) equals the number of reactive circuit elements. These states

are proportional to the energy storage mechanisms within the

structure. In general, state space modelling allows xðtÞ to con-

tain any variables that describe the time varying nature of the

physical system. For instance, it can be the displacement and

the velocity of an elastic medium or the pressure and the

velocity of an acoustic wave. Thus, the following analysis can

be considered to be applicable to a large class of physical

systems.

With a view to applications of these structures, we con-

sider the case of sinusoidal excitation and numerically solve

(1) to obtain values for all the states at discrete steps in time.

The observation of these solutions shows that the system

reaches a limit cycle whenever the input is relatively weak.

Physically, this means that the system is stable, whereby

fluctuations arising from the background thermal noise do

not lead to unbound growth over time of the system states.

Increasing the input power renders the limit cycle to be

unstable; this means that small fluctuations at certain autono-

mous frequencies get amplified through a process of energy

transfer from the input pump excitation to the autonomous

frequency components. The exact values of these autono-

mous frequencies are determined by the system characteris-

tics, which, unlike linear systems, are functions of the input

FIG. 1. (a) A 20-stage NL CRLH TL with input (left) and output (right)

SMA coaxial connectors. (b) A zoomed view showing the varactors and

biasing circuitry. The region inside the highlighted box identifies two unit

cells, and the microstrip sections are modelled as inductances and parasitic

capacitances (not shown in the figure). (c) Lumped circuit model of two unit

cells of an N-stage NL CRLH TL. Nonlinearity is implemented with varac-

tors having voltage dependent capacitance CL, see (A1). Typical values:

LL ¼ 1:797 nH, CR ¼ 1:100 pF, LR ¼ 2:700 nH, and CL ¼ 0:730 pF at bias

voltage Vb¼þ1.290 V for a balanced configuration.27
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level and frequency. Generally speaking, the autonomous

and the input frequencies are incommensurate. In this con-

text, the onset at which the input excites autonomous compo-

nents identifies a bifurcation condition. In this case, the limit

cycle bifurcates into a quasi-periodic solution (a torus). Such

phenomena have been observed experimentally in micro-

wave TLs12,16 and have been interpreted as parametric

behaviour consistent with experience with weak nonlinear-

ities in optical materials.8

A. Linearization at the limit cycle

We assume that xðtÞ in (1) can be decomposed into two

components: the values at the limit cycle �xðtÞ and the pertur-

bation dxðtÞ about this limit cycle

xðtÞ ¼ �xðtÞ þ dxðtÞ: (2)

The state vector �x encapsulates the effect of the pump fre-

quency fP as well as its integer higher harmonics mfP. The

inclusion of higher harmonics can be crucial for accurate

performance prediction. In an extreme case, for instance, the

presence of higher harmonics on a dispersive-less nonlinear

right handed TL plays an essential role in shock wave forma-

tion.28 By substituting (2) into (1), expanding in Taylor’s

series, and then neglecting higher order terms, an expression

for the linearisation of the disturbance about the limit cycle

is obtained

d _x ¼ @f

@x

����
�x

dx ¼ J x; tð Þj�x dx; (3)

where J is the Jacobian evaluated at the limit cycle and is a

T-periodic function of time. Thus, (3) describes a Linear

Time Periodic (LTP) system of differential equations with a

minimum period T ¼ 1=fP. Despite the periodicity of JðtÞ,
the solution of (3) is not necessarily periodic in T. The line-

arization process presented here is not very different from

linearizing at an equilibrium point, which is routinely used

to investigate the stability of electrical and mechanical sys-

tems,29 whereas for linear time-invariant (LTI) systems, the

Jacobian is a constant valued matrix. It is worth noting that

linearization is extendable to other more complex limit sets

such as toruses and strange attractors.23 For such complex

limit sets, the Jacobian will be defined on complex manifolds

and will be neither constant nor periodic.

B. General solution of the LTP system

A general solution of the n-dimension LTP system in (3)

describing the time evolution of dxðtÞ for time t � to depends

on the initial condition of the states dxðtoÞ and knowledge of

the state transition matrix Uðt; toÞ ¼ XðtÞX�1ðtoÞ, where

XðtÞ is a fundamental matrix of the linearised system.30,31

We then have for any t � to

dxðtÞ ¼ Uðt; toÞ dxðtoÞ: (4)

Upon substitution of (4) into (3), we also observe that

Uðt; toÞ satisfies the same time periodic expression

_Uðt; toÞ ¼ Jðx; tÞj�x Uðt; toÞ; Uðto; toÞ ¼ I: (5)

Since matrix J is T-periodic, Floquet theory can be

applied to write30,31

Uðt; toÞ ¼ PðtÞ eðt�toÞR; (6)

where the n� n matrices P and R are defined as31

eRT ¼ UðT þ to; toÞ; (7)

PðtÞ ¼ Uðt; toÞ e�Rðt�toÞ; PðtoÞ ¼ I: (8)

Matrix PðtÞ is also T-periodic (Pðtþ TÞ ¼ PðtÞ). The

eigenvalues qk ðk ¼ 1; 2…nÞ of UðT þ to; toÞ in (7) are

called the Floquet multipliers and are, in general, either

purely real valued or occur as complex conjugate pairs. Note

that (6) can be considered as the generalized time domain

Bloch-Floquet (BF) condition in periodic structures.

If the eigenvalues of R are distinct, the matrix eRT can

be diagonalized by the appropriate similarity transformation

eRT ¼ S e
~RT S�1, where ~R is diagonal. Noting that for matrix

functions32 S e
~RT S�1 ¼ eS ~RTS�1

, we then have R ¼ S ~R S�1,

and hence, dxðtÞ can be written as

dxðtÞ ¼ ~PðtÞ et ~R ðS eto ~RÞ�1 dxðtoÞ; (9)

where ~PðtÞ ¼ PðtÞS. Since matrices eRT and e
~RT are similar,

they share the same eigenvalues qk ¼ jqkj expðihkÞ.
Furthermore, the diagonal elements of the diagonal matrix

e
~RT are these eigenvalues, which we write as qk ¼ elkT , where

lk � rk þ ihk=T are the Floquet exponents (rk ¼ lnjqkj=T).

Since ðS eto ~RÞ�1dxðtoÞ is a constant, YðtÞ � ~PðtÞet ~R is also a

fundamental matrix of the linearised system. By the definition

of fundamental matrices, the columns ykðtÞ of YðtÞ are inde-

pendent solutions of (3).30 The kth independent solution can

be written as

ykðtÞ ¼ elkt~pkðtÞ; (10)

where ~pkðtÞ is the kth column of ~PðtÞ. In the following, it will

be useful to evaluate the real-valued observable system

response. This can be achieved by the proper combination of

ykðtÞ and its associated complex conjugate solution. One set

of solutions is

ykðtÞ ¼ 2 erkt <ð~pkðtÞÞ cosðhkt=TÞ � =ð~pkðtÞÞ sinðhkt=TÞ
� �

(11)

which is equivalent to the real part of ykðtÞ in (10).

Similarly, an independent set of real solutions is readily

obtained from the imaginary part of ykðtÞ.
The expression (11) explicitly shows that for jrk � 0j or

jqk � 1j; ykðtÞ is the product of two time harmonic terms,

T-period ~pkðtÞ, and the other at an unrelated frequency deter-

mined by the phase angle of the Floquet multiplier, hk=T.

Since the solutions of linear time varying differential equa-

tions form a vector space, the observed solution is the linear

combination of ykðtÞ

yðtÞ ¼
Xn

k¼1

ck ykðtÞ; (12)
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where ck are the constants and n is the dimension of the state

vector. The set of independent solutions ykðtÞ forms the basis

of the space of solutions to (3). Note that although the evalu-

ation of dxðtÞ from (4) will reveal the behaviour of the sys-

tem to any initial conditions dxðtoÞ, the evaluation of (10) or

(12) reveals the same characteristic system behaviour in the

ykðtÞ solutions, independent of any initial condition consider-

ations. In the following, we use (10) as a predictor for ykðtÞ,
having the same characteristic behaviour as disturbances

dxðtÞ to the limit cycle �xðtÞ.

III. BIFURCATION OF AUTONOMOUS FREQUENCIES

A consequence of complex valued Floquet multipliers is

the generation of autonomous frequencies in the solution to

(3). From (10), the value of the kth solution at time t þ T is

given by

ykðtþ TÞ ¼ qk ykðtÞ ¼ elkTykðtÞ: (13)

As with qk, lk can be complex and is a function of the

system characteristics, input excitation amplitude, and fre-

quency. If the magnitude of the kth Floquet multiplier jqkj is

slightly greater than one, i.e., the multiplier crosses the unit

circle in the complex plane, then yðtÞ increases in amplitude

with time, as does dxðtÞ, indicating the onset of instability that

can result from a change in the operating conditions. For the

case where only one or a few Floquet multipliers have magni-

tudes just greater than unity, the response yðtÞ will be domi-

nated by the elkt terms associated with this/these multipliers.

While too large an increase in the magnitude of the dis-

turbance dx violates the linearisation assumptions (i.e.,

higher order terms in the Taylor series expansion that led to

(3) need to be considered), experimental observations have

shown that it is possible for the disturbances to remain rela-

tively small, which can be interpreted as the transformation

of the limit cycle into a torus through the generation of

autonomous frequencies related to the complex valued

Floquet multipliers qk ¼ jqkj expðihkÞ, where from (11), the

values of these frequencies are given by

f kð Þ
m ¼ fP

���� hk

2p
þ m

����; (14)

where the superscript k emphasizes that the frequency is

associated with the multiplier qk. The phase ambiguity of

2mp; m ¼ 0;61;62;… suggests an infinite number of

autonomous frequencies. For example, f
ðkÞ
0 ¼ jhk=2pjfP and

f
ðkÞ
�1 ¼ fP � f

ðkÞ
0 . The generation of potentially an infinite

number of autonomous frequencies is due to the coupling of

the time harmonics, resulting from the periodicity of ~pkðtÞ,
which is the time domain equivalent of spatial harmonics in

spatial periodic structures. If the largest Floquet multiplier

is purely real valued, then the unit circle crossing corre-

sponds to a flip-type bifurcation,23 leading to the observa-

tion of bistability or multistability.17 Complex valued

Floquet multipliers occur as conjugate pairs, leading to

Hopf-type bifurcations23 and observation of autonomous

frequency generation. The Floquet analysis provides a valu-

able tool that links the generation of the autonomous

frequencies to the position of the corresponding Floquet

multipliers relative to the unit circle in the complex plane.

From (10) and (11), it is clear that the frequency content

of ykðtÞ consists of frequencies

x ¼ jxk6mxpj; m ¼ 1; 2;…: (15)

Note that (15) automatically calculates the sum and differ-

ence frequencies traditionally associated with nonlinear mix-

ing products.

It is worth emphasizing that the stability analysis car-

ried out here shows that for each qk crossing the unit circle,

an infinite number of autonomous frequencies are gener-

ated. This is to be compared to three wave mixing where

interactions are limited to three waves only (pump, signal,

and idler). For band limited structures, such as CRLH

TLs, higher frequency components are attenuated, thereby

restricting the number of waves that can be observed in

practice.

For an infinitely long TL, the spatial regularity will aug-

ment the temporal Bloch-Floquet (BF) condition shown by

(6) with an extra spatial BF condition, resulting in a disper-

sion relation between the spatial and temporal characteristic

multipliers. Equivalently, spatial characteristic multipliers,

bk, are nothing but the complex wave number. Hence, the

propagation can be described using the space time harmon-

ics. In general, both bk and lk can be complex. When l is

imaginary, an imaginary value of b corresponds to an

allowed propagation mode, while a real b indicates a stop

band. The distinction between the temporal (complex fre-

quency) and spatial (complex propagation constant) was pre-

viously investigated in the context of a spatio-temporal

varying right handed TL.25,33

IV. RESULTS AND DISCUSSION

The framework presented in Sections II and III is

applied here to a lumped circuit model for the 20-stage

transmission line shown in Fig. 1 to determine the spontane-

ously generated autonomous frequencies and their wave-

forms. There are 82 state variables, and hence, x is an

n¼ 82-length vector. The SSM in (1) was obtained by

applying basic circuit theory to construct an analytical for-

mulation for the function f and the Jacobian Jðx; tÞ in the

linearized form (3). The voltage and currents shown in Fig.

1(c) were relabelled to form the elements of x. For the sake

of completeness, the nonlinear and linearized state space

equations are presented in the Appendix section. The nodal

equations of the very first and last cells are slightly modified

to maintain a symmetric CRLH structure4 due to the con-

nection with the source and the load, respectively. In the

absence of the pump power, the system is a linear time

invariant (LTI) and the varactor series capacitances are

determined by the bias voltage as given by (A10). By

assuming that the LTI TL is infinitely long, the dispersion

relation of the linear time invariant TL can be obtained ana-

lytically via the relation4

j2 ¼ 4 sin2 bp

2

� �
; (16)
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where j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZseYsh

p
, and Zse ¼ iðxLR � 1=xCL0Þ and

Ysh ¼ iðxCR � 1=xLLÞ are the series impedance and shunt

admittance, respectively. In (16), bp is the phase shift per

unit cell at a given angular frequency x, where p is the phys-

ical length of the unit cell.4 Fig. 2 shows the dispersion rela-

tion given by (16). The plot highlights regions where

backward waves (the phase and group velocities vph and vg)

have opposite directions.

For the 20-stage NL CRLH TL shown in Fig. 1, the source

excitation consisted of a single sinewave (pump) excitation

connected to the input of the first unit cell, with pump fre-

quency fP and voltage amplitude VP. This sinusoidal source

contributed to one element of the n¼ 82 length uðtÞ vector,

with other 20 of the uðtÞ elements corresponding to the con-

stant valued varactor bias voltage Vb for each of the 20 unit

cells (Fig. 1). Then, numerical values for the states xðtÞ over a

range of discrete time steps were obtained by numerically solv-

ing this system of first order differential equations (imple-

mented using Matlab’s ode45 solver34), for a sinusoidal

excitation at the input of the structure. By allowing the solution

to run for a sufficiently long time (from time t¼ 0 to

t ¼ to � 2� 4 ls), the steady state limit cycle �xðtÞ was estab-

lished.35 The state transition matrix Uðt; toÞ was then calcu-

lated by solving (5) from time t¼ to to t ¼ to þ T using the

ode45 solver. We note that Jacobian’s time varying term

associated state variable varactor voltages x4n in (A1) are re-

evaluated at each time step using the limit cycle values �xðtÞ.
The Floquet multipliers are computed by evaluating the

eigenvalues of Uðto þ T; toÞ, with the corresponding frequen-

cies determined from (14). The pump level VP is increased,

and the above calculations are repeated until one (or more)

multiplier(s) just cross(es) the unit circle (jqkj � 1 at

VP ¼ VP0); this is the onset of bifurcation and identifies the

generation of the autonomous frequencies. Fig. 3 shows the

calculated frequencies (f
ð1Þ
0 only) using both (14) and fre-

quencies identified in the Fourier transform of waveforms

xðtÞ that are solutions to (1) for t � to. It is clear that the sta-

bility analysis accurately predicts the values of the autono-

mous frequencies. Additionally, there is a good agreement

between the behaviour of the calculated VP0 (Fig. 3(b)) and

the measurement27 of the structure in Fig. 1 (Fig. 3(c)).

However, there is some discrepancy above 5 GHz, which is

attributed to the parasitic effects, not taken into account in

the state space model.19 These parasitic effects introduce a

dip (absorption) in the LTI transmission coefficient at around

2 GHz that changes the system dynamics. Nevertheless, the

non-restrictive nature of the state space formalism permits

the application of more sophisticated models and the bifurca-

tion analysis will not change.

Fig. 3(b) shows that the onset of bifurcation voltage, VP0,

attains its minimum in the vicinity of the 4.400 GHz–4.500 GHz

interval, suggesting a change in the bifurcation nature. In fact, it

will be shown in Sections IV A and IV B that at the onset of

bifurcation, only one Floquet multiplier crosses the unit circle

when fP ¼ 4:500 GHz, which corresponds to one set of autono-

mous frequencies f ð1Þm : However, when fP is slightly decreased

to 4.400 GHz, two sets of incommensurate autonomous frequen-

cies f ð1Þm and f ð2Þm emerge. Equivalently, this means that two

Floquet multipliers simultaneously cross the unit circle.

A. One dominant multiplier

Figure 4(a) depicts the loci of the three most dominant

multipliers as a function of the pump voltage for a pump

FIG. 2. The dispersion relation of the linear time invariant TL. The dots 1,

2, and 3 represent the loci of the pump frequencies fP ¼ 4:400 GHz; fP
¼ 4:500 GHz, and fP ¼ 5:800 GHz, respectively.

FIG. 3. (a) The f
ð1Þ
0 values calculated over fP ¼ 4.300 to 5.800 GHz. (b) The

calculated onset of bifurcation, VP0. (c) The measured27 VP0 versus fP.
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frequency fP ¼ 4.5 GHz until bifurcation occurs. As depicted

in Fig. 4, the autonomous frequencies depend on the pump

voltage VP. This is expected since as VP changes, the limit

cycle size changes as well, which alters the linearized system

(3). When fP is 4.500 GHz, only one multiplier crosses the

unit circle (vertical dashed line in Fig. 4(a)). The Fourier

spectrum of the output voltage confirms this by showing

only one frequency component f
ð1Þ
0 ¼ 1:701 GHz corre-

sponding to the dominant multiplier (Figs. 4(b) and 4(c)).

The mixing product f
ð1Þ
�1 ¼ jf

ð1Þ
0 � fPj also appears.

B. Two dominant multipliers

Repeating the analysis in Section IV A, but when fP is

slightly decreased to 4.400 GHz (Fig. 5(a)), two multipliers

cross the unit circle. Examining the Fourier spectrum (Figs.

5(b) and 5(c)), it is clear that both the multipliers have an

effect on the spectral content. The two independent solutions

y1ðtÞ and y2ðtÞ, corresponding to the two dominant multi-

pliers, evolve independently in the solution space.

The versatility in determining xðtÞ at any time through

the solution of (1) means that we can observe both the tem-

poral and spatial behaviour of all the state variables in the

structure. As an example, Fig. 6 shows the distributions of

the spectral amplitudes at frequencies f
ð1Þ
0 , f

ð2Þ
0 ; and f

ð1Þ
�1 ; f

ð2Þ
�1 ,

where f ð1Þm and f ð2Þm correspond to the first maximum and sec-

ond maximum jqkj values, calculated from those components

of vector xðtÞ corresponding to the voltages across the shunt

capacitances CR in each stage, for fp ¼ 4:400 GHz and VP ¼
0:547 V. Also shown are the spectral amplitudes calculated

from the two time series y1ðtÞ and y2ðtÞ in (11). Very good

agreement between the two can be observed, further illustrat-

ing the utility and the accuracy of the stability analysis. It is

also worth noting that although the f
ð1Þ
0 and f

ð2Þ
0 of both the

multipliers are very close in value (1.698 and 1.711 GHz),

their spatial amplitude profiles are quite different. These two

frequencies are close to the lowest Bragg frequency (fc � 1:7
GHz, refer to Fig. 2) where the TL can be considered to act

like a photonic crystal. Furthermore, the amplitude variation

of the f
ðkÞ
�1 terms (2.702 and 2.689 GHz) suggests a transfer of

power from the 4.400 GHz pump to the backward propagat-

ing f
ðkÞ
�1 components, consistent with the three wave mixing

explanation (parametric amplification). This can be better

understood by referring to Fig. 7 which plots the relative

phase and normalized power of the f
ð1Þ
�1 ¼ 1:698GHz and

f
ð1Þ
0 ¼ 2:702 GHz components of the CR capacitor voltages at

the output of each unit cell. The f
ð1Þ
�1 frequency value is equal

to the Bragg frequency, and hence, the slope of the phase is

6p. The two autonomous components are in the left hand

region (Fig. 2), implying that the phase and group velocities

are opposite. The phase velocity is pointing toward the load

whenever the slope of the phase is negative. According to

the sign convention of the state variables shown in Fig. 1(c),

positive power means that energy is transferred toward the

load. From Fig. 7, it is found that the directions of the phase

velocity (proportional to the slope of the phase) and the

group velocity (parallel to the direction of power flow) are

always opposite, a characteristic of backward waves. For the

first ten stages, power is pumped from the strong 4.400 GHz

wave to the two autonomous components, as they propagate

FIG. 4. One autonomous frequency at

f
ð1Þ
0 ¼ 1:701 GHz: fP ¼ 4:500 GHz. (a)

The loci of the magnitude of the three

multipliers which have the largest mag-

nitude, calculated as a function of the

pump voltage VP. VP takes the values of

0.14, 0.190, 0.240, 0.290, 0.340, and

0.390 V, where VP0 ¼ 0:390 V. (b)

Multipliers located in the complex plane

together with the unit circle. Since mul-

tipliers appear as complex pairs, only

half the circle is shown. (c) The Fourier

spectrum of the output voltage obtained

by solving (1) for VP ¼ VP0. (d)

Zoomed view of the spectrum.
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FIG. 5. Two autonomous frequencies

at f
ð1Þ
0 ¼ 1:698 GHz and f

ð2Þ
0 ¼ 1:711

GHz: as for Fig. 4 but for

fP ¼ 4:400 GHz. VP takes the values

of 0.300, 0.350, 0.400, 0.450, 0.500,

and 0.547 V, where VP0 ¼ 0:547 V.

Two closely spaced autonomous fre-

quencies are observed.

FIG. 6. The normalised waveform distribution of the voltage across the shunt capacitance CR along the NL CRLH TL, when fP ¼ 4:4 GHz. (a) The most dom-

inant multiplier. (b) The second dominant multiplier.
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toward the source, indicating a parametric process involving

three waves, where their frequencies are related by (14).

Additionally, the pumped frequency is raised to fP ¼
5:800 GHz (Fig. 8). In this case, one of the autonomous fre-

quencies is in the right hand region (above the band edge

1=2p
ffiffiffiffiffiffiffiffiffiffiffi
LRCL

p
� 3:58 GHz, refer to Fig. 1). Again, the stabil-

ity analysis can predict the waveforms of the autonomous

frequencies accurately. Interestingly, the amplitude of the

waveform at frequency f ¼ 2:024 GHz is not smooth, sug-

gesting that the interaction is atomic and cannot be described

using the effective medium theory.

It is worth noting that the Floquet analysis provides

insight into how the autonomous frequencies and their

waveforms are related to the system parameters via the T-
Periodic Jacobian matrix. Although a brute force nonlinear

solver can predict the values of the frequencies and their

waveforms, it does not explain why the autonomous frequen-

cies attain certain values and how they depend on the system

parameters and input power and frequency. However, the

brute force nonlinear solver was indeed invoked to validate

the predictions of Floquet analysis.

The onset of bifurcation can be understood by consider-

ing the condition at which the generation of a Stokes wave

becomes possible in a Stimulated Brillouin Scattering (SBS)

process.8 For an optical medium, an intense pump of fre-

quency fP causes electrostriction, resulting in a generation of

an acoustic wave of frequency f1. Although it has a small

amplitude, the acoustic wave beats with the pump to rein-

force a Stokes wave (at frequency f1 ¼ fP � f2), generated

via the thermal fluctuations. This wave in turn beats with the

pump to reinforce the acoustic wave further. The positive

feedback behaviour of the two interactions results in an

exponential growth of the amplitude of the Stokes wave. In

the CRLH case, the pump beats with the thermally excited

autonomous components. As a result, the amplitudes of the

autonomous components get amplified.

As in SBS, the positive feedback process is only possi-

ble when the input pump level exceeds a threshold, which is

the onset of bifurcation.8

V. CONCLUSION

In this article, we applied the rigorous NLD theory to

study the stability of a NL CRLH TL structure. NLD theory

allows the decomposition of the wave behaviour into a spa-

tially distributed array of time varying states (voltages and

currents) that display limit cycle behaviour that is periodic

with the pump excitation. For excitation levels above a

threshold, additional autonomous frequency components are

generated, which can be observed to wind around the limit

cycle forming a dense torus. The autonomous frequencies

depend on the system parameters and the input excitation.

When the pump level is over a certain threshold, the limit

cycle bifurcates into a torus and the autonomous components

are sustained. The NLD approach takes into account the pos-

sible interactions via the higher harmonics; it is general in

terms of the nature and the strength of nonlinearity; it is not

limited by the effective media approximation. While the

approach taken here does not predict the steady state ampli-

tudes of the autonomous frequencies (a consequence of

neglecting higher order terms with the linearisation of (3)), it

does accurately predict the waveform, the values of the

autonomous frequencies, the pump power threshold where

these appear, and synthesis of the system response for

selected autonomous frequency components and provides a

convenient mechanism to track individual autonomous fre-

quency components throughout the structure. This approach

provides an important investigative tool for characterising

NL CRLH TL structures, with a view to aid the design pro-

cess and realise potential applications for these structures.

Moreover, the Floquet analysis is a time domain method

which emerges directly from the linearization of the state

FIG. 7. Top: Calculated Phase and Bottom: Normalized Power of the auton-

omous components when fP ¼ 4.400 GHz.

FIG. 8. The normalised line voltage distribution of the autonomous frequen-

cies along the NL CRLH TL, when fP ¼ 5:8 GHz and VP0 ¼ 1:4 V.
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space model; this is contrasted to wave mixing and

Harmonic Balance (HB) methods which are formulated in

the frequency domain. Additionally, the autonomous fre-

quencies are obtained from the characteristic (Floquet) mul-

tipliers which are determined by the system parameters

(encapsulated in the time periodic Jacobian). On the other

hand, HB techniques will usually assume a range or set of

possible frequencies and solve the circuit for each one to

determine the system poles (for example, Z(f) as in Ref. 27);

it does not provide deep insight into why the autonomous

frequencies take certain values.

APPENDIX: STATE SPACE MODEL

The series and shunt connected microstrip sections are

modelled by inductors LR, LL, and CR. The inductor currents

and capacitor voltages are the state variables and labelled as

shown in Fig. 9. The capacitors CL model the reverse-biased

varactor diode’s depletion capacitance, which is related to

the voltage x4n; n ¼ 1; 2;…;N across the nth diode by36

CL ¼
Cj0

1þ �1ð Þnx4n=w0

� 	c ; (A1)

where Cj0;w0; and c were experimentally found to be

1:200pF; 2:055 V, and 1.000, respectively. The ð�1Þn factor

is due to the back to back connection of the varactors

(Fig. 1). The state space equations can be formulated for the

circuit model in Fig. 1(c) as

_x4n�1 ¼
1

LR
x4n�2 � Rx4n�1 � x4n � x4nþ2ð Þ; (A2)

_x4nþ1 ¼
1

LL
x4nþ2 � Vbð Þ; (A3)

_x4nþ2 ¼
1

CR
x4n�1 � x4nþ1 � x4nþ3ð Þ; (A4)

_x4nþ5 ¼
1

LL
x4nþ6; (A5)

_x4nþ6 ¼
1

CR
x4nþ3 � x4nþ5 � x4nþ7ð Þ (A6)

and

_x4n ¼
1

CL x4nð Þ
x4n�1: (A7)

An equation for x4nþ3 can be obtained from (A7) by replacing

n by nþ 4. All state space equations (A3)–(A6) are linear in

the state variables. Hence, the corresponding Jacobian Jðx; tÞ
elements are just the coefficients of the state variables. The

nonlinearity, due to the nonlinear characteristics of the varac-

tors, appears in (A7). It is worth noting that the state space

equations are slightly modified for the first and last unit cells,

partly due to the presence of the shunt inductor 2LL, capaci-

tance CR=2, and the connection to the input source and load,

respectively. The linearized form of (A7) is obtained by tak-

ing the partial derivative of the right hand side with respect to

x4n and x4n�1 at the limit cycle solution �x4n and �x4n�1 to give

d _x4n ¼
1

CL �x4nð Þ
dx4n�1 �

1

C2
L

�44nð Þ
@CL

@x4n


 �
�x4n

�x4n�1 � dx4n:

(A8)

The coefficients of (A8), which are the Jacobian elements

linking dx4n�1 and tdx4n with d _x4n, are T-periodic with a

minimum period of T ¼ 1=fP. In the absence of the pump,

(A6) becomes

d _x4n ¼
1

CL0

dx4n�1; (A9)

where

FIG. 9. (Top) The Transmission Line Topology. The source and load impedances are 50 X. (Bottom) Two unit cells, where shunt elements are combined

together.
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CL0 ¼
Cj0

1þ Vb

w0

� �c ; (A10)

which is constant for a given bias Vb.
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