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A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron para-
magnetic resonance (EPR) spectrometers. The probe’s coupling coefficient, j, the quality factor, Q, and the
filling factor, g are vital in assessing the EPR spectrometer’s performance. Coupled mode theory (CMT) is
used to derive general expressions for these parameters. For large permittivity the dominating factor in j
is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases,
resonators with low dielectric constant can couple much stronger with the cavity than do resonators with
a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled g is the average
of the two uncoupled ones. In practical EPR probes the coupled g is approximately half of that of the DR.
The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (x1, x2) and
the individual quality factors (Q1, Q2). It is calculated for different probe configurations and found to agree
with the corresponding HFSS� simulations. Provided there is a large difference between the Q1, Q2 pair
and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of
Q1 and Q2. In general, the signal enhancement ratio, Iwith insert=Iempty , is obtained from Q and g. For low loss
DRs it only depends on g1/g2. However, when the DR has a low Q, the uncoupled Qs are also needed. In
EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, U, is
calculated as a function of j and Q. It is found to be significantly greater than five times the average band-
width. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the
other. The CMT expressions derived in this article are quite general and are in excellent agreement with
the lumped circuit approach and finite numerical simulations. Hence they can also be applied to a loop-
gap resonator in a cavity. For the design effective EPR probes, one needs to consider the j, Q and g
parameters.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

A large number of biological molecules of medicinal signifi-
cance contain unpaired electrons and are paramagnetic. As a result
comprehending their magneto-structural properties, such as
geometry, electronic structure–function relationships, spin–spin
distances and gyromagnetic, fine, and hyperfine tensors is of cru-
cial importance. Pulsed or continuous-wave (CW) electron reso-
nance techniques, such as electron paramagnetic resonance (EPR)
[1,2], electron–nuclear double resonance (ENDOR) [3,4], electron–
electron double resonance (ELDOR) [5,6], electron spin echo enve-
lope modulation (ESEEM) [7,8], double quantum coherence (DQC)
[9–11] and pulsed ELDOR, also known as DEER [7,12–14], are pow-
erful spectroscopic methods for studying the properties of para-
magnetic molecules.

Usually these biological molecules are large and the number of
paramagnetic moieties in comparison to the overall molecule is
small. Thus they are considered to be paramagnetically dilute. In
addition, the sample size is generally small and its quantity is lim-
ited. Consequently, in the past few years extensive research and ef-
fort is spent on increasing the sensitivity of the spectrometers. A
major thrust in this domain is to design probes that are more sen-
sitive. Accordingly, miniature loop-gap (LGR) [15–17] or dielectric
(DR) [18–25] resonators were introduced as probe components.
These resonators have small sizes, high energy density and large
magnetic fields (B1) in the sample vicinity (filling factors) [16–
22,24–27].

Loop gap resonators and DRs are normally housed in a shield to
confine the probe’s microwave radiation. Cavities may be
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considered as large microwave shields and have also been used to
house LGRs and DRs [28]. Different groups have used a single reso-
nator placed in a cavity [18,19,23–27]. A similar probe was em-
ployed in our laboratory that consists of two dielectric resonators
(er = 29.2), asymmetrically placed in a rectangular TE102 cavity.
The resulting DR/TE102 probe has a signal to-noise-ratio (SNR) is
at least 24 times larger than the conventional TE102 cavity alone
[21].

Most of the work performed has mainly been empirical in nat-
ure. With the advent of sophisticated electron magnetic resonance
techniques, the majority of researchers have become familiar with
the probe’s performance parameters, such as quality factors, Q and
filling factors, g. They are now routinely taken into consideration
when designing complex experiments. Therefore it is essential
that, starting from first principles, one understands theoretically
the coupling between the different components such as the cavity,
DRs or LGRs, in order to optimize efficient magnetic resonance
probes. A particularly useful endeavor is to derive analytical
expressions, in closed form, that give insight and predict the fre-
quencies, electromagnetic field distributions, g, Q of the probe’s
modes and coupling constants, j, between its resonating compo-
nents. The accuracy of the predicted frequency modes and electro-
magnetic field distributions are then compared with numerical
finite element simulations.

For example, the frequency-field distributions and filling factors
of the DR/TE102 probe were simulated and analyzed by finite ele-
ment methods [29]. It was shown that the three resonating modes
couple to form three coupled modes. The resonant cavity was
determined to be an essential component of the probe that affects
its frequency.

Theoretical treatment of magnetic resonance probes is rare. In a
seminal paper, Mett et al. were among the first to simulate the ef-
fect of a cylindrical cavity as a resonating entity on a single dielec-
tric resonator. The results were compared with an equivalent
circuit model [30]. In a parallel fashion the current authors, start-
ing from first principles and Maxwell’s equations, developed a cou-
pled mode theory in the form of an eigenvalue problem [31]. It was
used to analyze the properties of a probe consisting of a DR in-
serted in a cavity. By solving the eigenvalue problem, the predom-
inant coupled modes (symmetric and anti-symmetric) were found.
The frequencies and fields were also calculated. As the next logical
step, in this article equations and expressions for the filling factor,
quality factor and coupling coefficients, which are important in
understanding the behavior of EPR probes, are derived.

As previously mentioned, a probe consisting of a loop-gap (LGR)
or a dielectric resonator (DR) inserted in a conducting cavity (CV)
significantly enhances the signal-to-noise ratio (SNR) of its elec-
tron paramagnetic resonance (EPR) spectrometer [18,19,21,22].
For a certain resonance frequency, f, the size of a DR or a LGR is
much smaller than that of a CV. Accordingly, the filling factor of
the probe increases due to the compactness of the magnetic fields
inside and in the vicinity of the inserted resonator [22]. When the
frequencies of the DR TE01d mode and that of the rectangular CV
TE102 mode (or cylindrical CV TE011 mode) are close (near degener-
ate), the energy exchange between the two modes is a maximum
[31]. This situation, is helpful if, in designing an experiment, one
needs to enhance the signal intensity of a standard conventional
CV without modifying the coupling to the microwave bridge [22].
However if signal enhancement is of a higher priority, a DR mate-
rial inserted in a shield would have a better SNR [18,30]. In the lat-
ter case, the coupling to the microwave bridge through an iris on
the shield surface may be unachievable [30]. Two dielectric resona-
tors inserted in a cavity give the user the ability and flexibility to
tune the frequency of the probe in addition to improving the SNR
[21,29,32].
The electromagnetic interactions among the individual compo-
nents of an EPR probe are of vital importance. The coupling be-
tween the TE01d DR mode and the TE011 cylindrical CV mode
was studied in Ref. [30] using a lumped circuit model (LCM)
and in Ref. [31] using coupled mode theory (CMT). The LCM
was used to calculate different probe parameters, such as coupled
frequencies, quality factors and resonator efficiencies. The inter-
action of both modes results in two coupled ones: a symmetric
(parallel) mode and an anti-symmetric (anti-parallel) mode
[31]. CMT, when applied, was able to determine the coupled
fields in addition to the frequencies. This suggests that the cou-
pling coefficient, j, quality factor, Q and filling factor, g can also
be studied using CMT. The analytical equations derived here
using CMT give new insight for j, Q and g.

The coupling coefficient, j, between two resonators, such as
the DR and CV, is a measure of how strong they couple. This
parameter, as used in the current article, is not to be confused
with the coupling coefficient used to study how efficient a partic-
ular microwave mode of the probe is coupled to the spectrome-
ter’s microwave bridge. For DRs with moderate relative dielectric
constants (er � 20 � 50) the coupling coefficient between the CV
and DR modes is significantly high, particularly when the cavity’s
dimensions shrink [31]. Thus the modes are still coupled even
though the frequency difference between them is large [31]. The
significant presence of the DR mode, reflected by a large j value,
influences the probe filling factor and hence the signal intensity.
In contrast, for high dielectric constants (er � 100 � 300) j de-
creases and the modes tend to decouple [30]. Therefore it is
important to understand how the coupling coefficient depends
on the permittivity and the geometric dimensions. One of the aims
of the current paper is to answer this question.

Moreover, the coupling coefficient is also crucial in determin-
ing whether or not exciting one coupled mode will excite the
other. To excite a particular mode, the driving source’s frequency
should be within ±5BW = ± 5(f/Q) of the mode’s frequency [30].
Here BW is the mode bandwidth. Consequently, to avoid exciting
other spurious modes their frequencies should be at least five
times the bandwidth away from the desired mode. Therefore
the frequency separation of the two coupled modes and the
average bandwidth (BWavg) of the two modes need to be
understood.

The bandwidth is inversely proportional to the quality factor
[33]. Depending on the frequency difference between the two
uncoupled modes, the quality factor changes tremendously [30].
Consequently, it is crucial that one is able to predict beforehand
the Q behavior of the coupled system.

The intensity of an EPR signal depends on numerous factors.
Some of these factors are characteristic of the paramagnetic sam-
ple while others depend on the spectrometer and its probe. De-
tailed reviews of this subject have been undertaken [34–36].
The signal voltage, VS at the interface between the spectrometer’s
microwave bridge and the probe is directly proportional to the
signal intensity. It is

VS ¼ v00gQ
ffiffiffiffiffiffiffiffi
PZ0

p
;

where Z0 is the characteristic impedance of the microwave bridge
and P is the incident microwave power coupled to the probe. The
magnetic susceptibility of the sample, v00; is the imaginary compo-
nent of the magnetic susceptibility. Thus, for unsaturated samples,
the signal intensity, I, for EPR probes is proportional to the resona-
tor’s parameters [22,37,38]
I / gQ
ffiffiffi
P
p

: ð1Þ
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Although a dielectric insert or a loop-gap may increase the fill-
ing factor, the quality factor may decrease in such a way that the
enhancement in the signal intensity may be affected [22,30].
How the filling factor changes with coupling is another important
question that needs to be answered.

For the above reasons, the aim of this paper is to derive analyt-
ical expressions for the coupling coefficient, quality factor and the
filling factor of a system consisting of a dielectric resonator in-
serted in a cavity. This is achieved using CMT. It is also assumed
that the findings here can be directly applied to the case of a
loop-gap resonator inserted in a cavity.

Section 2 concisely defines the coupled system where previ-
ously derived properties using CMT such as the frequencies, eigen-
vectors and the electric fields were presented. Using CMT,
expressions for the coupling coefficient, the quality and the filling
factors are derived in Section 3. This section forms the main core
needed to study the system at hand. In addition, results and discus-
sion of these parameters are also included as subsections. Coupling
coefficients, filling factors and quality factors are discussed in Sec-
tions 3.1-3.3 respectively. The results are verified using finite ele-
ment simulations. Finally, a summary and conclusions are
provided in Section 4.
2. Theoretical background

The system under consideration is depicted in Fig. 1. It consists
of a dielectric resonator inserted in the center of a cavity [31]. The
holder is made of a material with low loss and low permittivity,
such as Teflon, so its effect is negligible. The dielectric resonator
and the cavity are labeled resonator 1 and resonator 2 respectively.
Two types of dielectric resonators are used in this article, namely
types I and II. For type I er = 29.2, d1 = 6 mm, l1 = 2.65 mm and
f � 9:7 GHz. In contrast, for type II er = 261 and d1/l1 = 1. The terms
d and l are the resonators’ diameter and height respectively. The
cavity also has an aspect ratio of d2/l2 = 1.

The two modes of interest are the dielectric TE01d mode and the
cavity TE011 mode. The electric field of each mode can be written as
[33],

Eu1 ¼ M1J1ðk1rÞ
cosðbzÞ r 6 d1

2 ; jzj 6
l1
2

e
al1

2 cos bl1
2

� �
e�ajzj r < d1

2 ; jzj >
l1
2

8<
:

and
Fig. 1. A probe formed by a dielectric resonator inserted in a conducting cavity. The
dielectric insert is held inside a hollow low loss/low permittivity holder.
Eu2 ¼ M2J1ðk2rÞ cos
pz
l2

� �
: ð3Þ

Eq. (2) describes the DR in free space. Usually for small cavities
the planar walls are imposed as boundary conditions. However
here the effect of the cavity walls is ignored because the DR is fixed
in the CV center and the distance between the DR and the CV walls
is very large. In these equations k1, k2 are the radial wave numbers
of the dielectric and cavity respectively. E/i is the azimuthal elec-
tric field component and M1,2 are the amplitude of the fields. The
corresponding magnetic field values are obtained from Eqs. (2)
and (3) using the Maxwell’s equations:

H1;2 ¼ �
1

jx1;2
r� E1;2:

In the above equation, H1,2 are the magnetic field intensities and
x1,2 = 2pf1,2 are the angular frequencies of the DR and CV respec-
tively. In Eq. (2) the DR fields were assumed to be confined within
a perfect magnetic wall tube with a diameter equal to the dielectric
diameter [39]. The p01 term is the root of the 0th order Bessel func-
tion J0(x). It is equal to 2.405. The radial wave number k1 = p01/r1

while

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
erk

2
0 �

2:405
r1

� �2

;

s

where k0 is the free space wave number. Finally, r1 = d1/2 and is the
DR radius. The perfect magnetic wall approximation gives a maxi-
mum error in frequency of 10% less than the actual value [40].

In CMT the fields are expressed as a linear combination of the
uncoupled ones as [31]

E ¼ a1E1 þ a2E2 ð4Þ

and

H ¼ b1H1 þ b2H2: ð5Þ

Here E and H are the coupled electric and magnetic fields respec-
tively. The coupling coefficient, eigenvalues (x2) and the eigenvec-
tors (aþþi ; aþ�i ) were previously found to be [31]

j ¼ f12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A11A22
p ð6Þ

where

f12 ¼ e0ðer � 1Þ
Z

DR
E�1:E2dv

is the overlap integral. In general, Aij ¼
R

V eE�i � EjdV where e is the
permittivity of the probe which is function of position. In the cur-
rent article the fields are normalized such that

A11 ¼ A22 ð7Þ

x2 ¼ x2
1 þx2

2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 �x2
2

2

� �2

þx2
1x2

2j2

s
; ð8Þ

aþþ2 ¼ 1
2j
ðc2 � 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4j2 ðc2 � 1Þ2 þ c2

r !
aþþ1 ; ð9Þ

for the symmetric mode and

aþ�2 ¼ 1
2j
ðc2 � 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4j2 ðc2 � 1Þ2 þ c2

r !
aþ�1 ð10Þ

for the anti-symmetric mode. Here c2 is equal to

c2 ¼ x1

x2

� �2

:
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The reason why only two symmetric and anti-symmetric modes
were considered is best explained by a familiar example. A linear
combination of atomic orbitals serves as a good analogy from
chemical physics. When two atomic orbitals interact they form
two molecular orbitals. One is bonding (symmetric) and the other
is anti-bonding (anti-symmetric). The resulting simple molecular
orbitals give a very clear picture of the bonding and electron distri-
bution of these molecular orbitals. If one strives for extreme accu-
racy then all atomic orbitals should be considered, as in the case of
a complete configuration interaction calculation. This yields very
accurate energies but the resulting natural molecular orbitals con-
tain a huge number of components. As a result a clear simple bond-
ing picture is lost. Generally speaking, if all higher modes are
included in the CMT field expansions, the resulting properties
would be very accurate but the physical insight of these properties
would be too complex to analyze and comprehend.

When the CV and DR modes are degenerate (x1 = x2 = x0) the
resonance frequency splits into two xþþ ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffi
1� j
p

and
xþ ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ j
p

with corresponding eigenvectors a2/a1 = 1 and
a2/a1 = �1. When x1�x2 or x1	x2 and the coupling coefficient
is small, the symmetric mode always tends to the lower frequency
resonator’s mode while the anti-symmetric mode tends to the
higher mode.

3. Theoretical derivations, results and discussion

Equipped with Eqs. (6), (8), (9), and (10), expressions for the
resonator parameters such as the coupling coefficient j, the quality
factor Q and the filling factor g are derived.

3.1. Coupling coefficient

The coupling coefficient is found using Eq. (6) in conjunction
with the fields given in Eqs. (2) and (3). In addition, A11 and A22

are also required. For the cavity A22 can be written as follows [33]

A22 ¼
e0r2

2d2pJ2
0ðp001ÞM

2
2

2
;

where r2 is the cavity radius, p001 is the first root of J00ðxÞ and M is the
amplitude of the electric field. Similarly using Eq. (2) A11 takes the
form

A11 ¼
e0err2

1pJ2
1ðk1r1ÞM2

1

2
sin bl1

bþ l1

� �
:

The overlap integral is

f12 ¼ M1M22pe0ðer � 1Þp
0
01

p01

r3
1

r2
J2ðk1r1Þ

1
b

sin
bl1

2
:

Here the following approximations J1ðkcrÞ � 1
2 kcr; l1 	 l2 and b� p

l2
together with the d

dx x2J2ðxÞ ¼ x2J1ðxÞ recurrence relation were used
[41]. Consequently, the coupling coefficient given by (6) can be
written as,

j ¼ 13:16
ðer � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

2erbl2

p r1

r2

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos bl1
bl1 þ sin bl1

s

or

j ¼ 13:16
ðer � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

2erbl2

p S1

S2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos bl1

bl1 þ sin bl1

s
: ð11Þ

In this case S1 and S2 are the dielectric and cavity cross sectional
areas respectively. The above equation shows that, as long as the
dielectric constant is large, the dependence of the coupling coeffi-
cient on er is moderate (of the order of

ffiffiffiffi
er
p

) compared to its depen-
dence on the ratio of the two overlap areas S1/S2.
The formulae derived in the previous paragraphs are applied to
type I and type II resonators when inserted in a cylindrical cavity.
The DR operates in the TE01d mode and the cavity resonates in its
TE011 mode. From Eq. (11), the coupling coefficient is related to
the relative permittivity and areas by

j /
ffiffiffiffi
er
p S1

S2
: ð12Þ

When the diameter and height of the type II DR are in the range of
1.3–2.1 mm,

jer¼30

jer¼261
� 3 
 8:

A large coupling coefficient will certainly increase the dielectric
effect of the probe, which in turn improves the SNR compared to
that of an empty cavity. Since multifrequency/multifield magnetic
experiments are becoming increasingly important there is a need
by researchers for probes consisting of DR and CV that operate at
different frequencies. The main restriction is the availability of
DR materials with a suitable er to efficiently couple with the CV.
However, Relation (12) shows that the coupling can be also con-
trolled by the S1/S2 factor. This provides the spectroscopist with
an additional degree of freedom.

It is interesting to compare the values of j, derived here using
CMT and those computed using the LCM proposed in Ref. [30]. In
analyzing the circuit model, the coupling coefficient, is labeled j0

to distinguish it from the one given by Eq. (11). It is found to be
[30]

j0 ¼ x1x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LcCccLdCcc

p
; ð13Þ

where Lc, Ld are the cavity and dielectric inductance respectively
while Ccc is the coupling capacitance. Here it was assumed that
Ccc	 Cc, Cd and Lc;dCcc 	 ð1=x2

1;2Þ. The exact expressions for these
LC parameters have been defined previously [30]. Noting that

x2
1 ¼ 1=LdCd

and

x2
2 ¼ 1=LcCc

Eq. (13) can be written as

j0 ¼ Ccc=
ffiffiffiffiffiffiffiffiffiffi
CdCc

p
:

By using the formulae for Ccc, Cd and Cc one gets [30]

j0 ¼ 2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2erbd2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðbl1 þ sin bl1Þ

q
: ð14Þ

The coupling coefficient given by Eq. (14) is different from Eq.
(11), obtained using CMT. The main difference is the absence of
the explicit dependence on the area overlap S1/S2. Unlike Eq.
(11), provided all other parameters are fixed, Eq. (14) suggests that
j0 is inversely proportional to

ffiffiffiffi
er
p

.
The discrepancies between Eqs. (11) and (14) do not have a

drastic effect particularly when the DR and CV modes are nearly
degenerate. To clarify this point, a type II DR is inserted in a cavity
(d2 ¼ l2 ¼ 4:1598 cm, fTE011 ¼ 9:5 GHz) and the coupling coefficients
j and j0 are calculated. In these two equations, the b parameter is
the wave number along the dielectric material axis. It can be deter-
mined by solving the transcendental equation [33,39]

tan
bl1

2

� �
¼ a

b
:

Here a is the decay constant in free space and it is equal to

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2:405=r1Þ2 � k2

0

q
. The calculated j and j0 are plotted versus

the diameter of the DR over the interval (d1 ¼ l1 ¼ 1:3� 2:1 mm).



Fig. 2. Coupling coefficient using CMT and the LCM. The cavity has a fixed
dimension of d2 = l2 = 4.1598 cm and the dielectric resonator has a high relative
permittivity of 261 and its dimension was allowed to change, where d1 = l1.
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The results are depicted in Fig. 2. All calculations were performed
using Maple 13™ suite of programs (MapleSoft, a subsidiary of
Cybernet Systems Co. Ltd.).When designing EPR probes the fre-
quencies of the DR and CV are chosen to be nearly degenerate. In
this situation, (l1 � 1:75� 1:95 mm), it is clear from Fig. 2 that
the discrepancy between j and j0 calculated using both methods
is small. Consequently the magnetic resonance spectroscopists
have available two independent and complimentary methods to
assess their probes.

To check the percentage errors of both CMT and LCM, the sym-
metric and anti-symmetric frequencies are also calculated. The
deviations, compared to ANSOFT HFSS� (Ansys Corporation, Pitts-
burgh, PA, USA) simulations, are shown in Fig. 3. The HFSS program
uses finite element methods to numerically solve for the electro-
magnetic fields and frequencies subjected to the boundary condi-
tions. The relative frequency tolerance was taken to be less than
0.1%.

In Fig. 3 the CMT percentage errors relative to the reference fi-
nite element simulations are smaller when compared to those of
the LCM. This is particularly clear when the frequencies of the
two uncoupled modes are not close to one another. Since the
Fig. 3. The percentage error of the coupled modes frequencies using the CMT and
LCM. The DR diameter and height are equal and changes from 1.3 to 2.1 mm.
coupled frequencies depend on j and j0, therefore Figs. 2 and 3
indicate that CMT method gives more accurate coupling coefficient
values. In addition, Fig. 2 shows that the coupling coefficient calcu-
lated using CMT spans a larger range (0.012–0.04) compared to
that computed by the LC method (0.025–0.03).

Previously, the coupled frequencies were calculated using CMT
and the LCM for a configuration of a type I resonator in a cavity
where the cavity’s diameter was allowed to change from 2.5 cm
to 5.4 cm [31]. It was also shown that CMT gives better error
curves. As a further logical step, one studies in the current article
the behavior of the coupling coefficients given by Eqs. (11) and
(14). Hence for this configuration, j and j0 are calculated and plot-
ted in Fig. 4.

Fig. 4 illustrates that the coupling coefficient for type I resona-
tors is an order of magnitude higher than that shown in Fig. 2. This
is attributed to the increase in the overlap area S1/S2. Again, the cal-
culated j and j0 using both methods, are close when the resona-
tors are nearly degenerate. Consequently, one can conclude that
the LCM can predict the system’s behavior especially when the
two resonators are degenerate. For EPR probes, when the CV acts
as a shield with a small diameter, Fig. 4 shows that j is large
(0.25–0.45). This is quite significant and should be taken into ac-
count when designing an EPR probe.

The degree of coupling is defined by the ratio |a2/a1|. This
parameter determines the CV component relative to the DR com-
ponent. The larger the parameter value, the higher the CV mode
portion in the coupled mode. From Eqs. (9) and (10), it takes the
forms

1
2j
ðc2 � 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4j2 ðc2 � 1Þ2 þ c2

r !

and

1
2j
ðc2 � 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4j2 ðc2 � 1Þ2 þ c2

r !

for the symmetric and anti-symmetric mode respectively. Fig. 5
illustrates the behavior of |a2/a1| with respect to c2 = (x1/x2)2 for
different coupling coefficient values.

Fig. 5 shows that when j increases |a2/a1| decreases. From the
comparable values of a1 and a2 of Eq. (4) it is seen that the modes
tend to stay coupled. This is best observed in the anti-symmetric
mode when c2 < 1. It corroborates the previous observations that,
under these conditions, the anti-symmetric mode slowly decou-
ples for type I resonators [31].

3.2. Filling factor

The filling factor, g, is a measure of the concentration of the
magnetic field at the sample and is equal to [38]
Fig. 4. Coupling coefficient for type I resonator inserted in a CV. The CV’s diameter
was allowed to change from 2.5 to 5.4 cm. Here d2 = l2.



Fig. 5. The ratio ja2=a1j � k plotted versus the ratio c2 = (x1/x2)2 for different j
values. Small |a2/a1| values signify a large DR component.
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g ¼
R

Vsample jH?j
2dVR

CV jHj
2dV

:

Here |H\| is the magnetic field intensity perpendicular to the static
magnetic field. To calculate the filling factor, g, of the coupled sys-
tem, one takes the complex conjugate of the magnetic field of Eq.
(5), and integrates over the sample and total volumes. Thus g is
found, after using the normalization condition (7), to be

g ¼ ja1j2g1 þ ja2j2g2 þ 2a1a2

Z
Vsample

l0H1 �H2dv:

When the overlap is negligible, this equation reduces to

g � ja1j2g1 þ ja2j2g2:

When the frequencies x1 and x2 differ significantly the filling fac-
tor of the coupled system can be determined by referring to Fig. 5.
For example for the symmetric mode, when x1�x2, |a2/a1| is
large. In this case, the filling factor approaches the CV value.

For the degenerate case the magnitude of the expansion coeffi-
cients of both the symmetric and anti-symmetric modes in Eq. (4)
are equal to 1=

ffiffiffi
2
p

. Thus the filling factor of the modes is the aver-
age of the DR and CV filling factors,

g ¼ 1
2
ðg1 þ g2Þ: ð15Þ

This is a direct consequence of the fact that when the two uncou-
pled modes have equal frequencies, the resulting coupled modes
have equal contributions from the uncoupled modes. For a DR with
a high filling factor g1� g2 Eq. (15) is approximately

g ¼ 1
2
g1: ð16Þ

Therefore, Eq. (16) implies that by inserting a DR in a CV, the filling
factor is automatically cut in half. This is a direct consequence of the
equal components of H1 and H2 when their frequencies are degen-
erate [31]. This important result in conjunction with Q is vital for
EPR spectroscopist concerned with signal intensities where estimat-
ing the number of spins is important.

3.3. Quality factor

The quality factor, Q, is an important parameter in EPR spectros-
copy because it affects the probe’s signal intensity. As was previ-
ously mentioned in the introduction, the overall Q of the coupled
system together with j determine whether or not the coupled
modes overlap. Therefore in this article, an expression for Q is de-
rived. The quality factor of a resonator is defined as [33]

Q ¼ 2xWE

Pl
; ð17Þ
where x is the angular frequency of the coupled modes, WE is the
average stored electrical energy (at resonance, it is also equal to
the average stored magnetic energy) and Pl is the average power
loss. Expressing the energy in terms of the eigenvectors one arrives
at

WE ¼
1
4

Z
V
eða1E1 þ a2E2Þ � ða1E1 þ a2E2ÞdV

¼ 1
4

X2

i¼1

X2

j¼1

a�i Aijaj: ð18Þ

Similarly the power loss, Pl, is the sum of the losses inside the
dielectric material, Pld, and the loss on the conductor walls, Plc.

Pl ¼ Pld þ Plc: ð19Þ

They are equal to

Pld ¼
r
2

Z
DR
jEj2dV ; ð20Þ

and

Plc ¼
Rs

2

Z
Cavity

jHtanj2dS: ð21Þ

Here r is the dielectric conductivity and Rs is the cavity surface
resistance.

Using expansions (4) and (5), the energy and power values gi-
ven by Eqs. (18)–(21), can be re-written as

WE ¼
P

i;ja
�
i aj
R

V eE�i � Ejdv
4

; ð22Þ

Pld ¼
X

i;j

a�i aj
r
2

Z
DR

E�i � EjdV ; ð23Þ

and

Plc ¼
Rs

2

X
i;j

b�i bj

Z
@V

H�i �HjdS: ð24Þ

When the coupling is small the overlap area S1/S2 is also small and
the above relations can be approximated as

WE �
a2

1

R
V ejE1j2dv þ a2

2

R
V ejE2j2dv

4
¼ a2

1A11 þ a2
2A22

4
;

Pld � ja1j2PDR
ld

and

Plc � jb2j2PCV
lc :

Here PDR
ld and PCV

lc are the power losses for the dielectric insert
and cavity respectively. Using the normalization condition (7),
one can express the quality factor, given by (17), for the coupled
system as

x
Q
¼ ja1j2x1

Q 1
þ jb2j2x2

Q 2
: ð25Þ

Here

Q1 ¼
x1

2PDR
ld

ð26Þ

and

Q2 ¼
x2

2PCV
lc

: ð27Þ

They are the quality factors of the dielectric and cavity resonators
respectively. The power loss due to the iris, Piris, can be taken into
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account by noting that it occurs at the iris cavity interface and is
mainly due to the CV fields. Thus Q2 is taken to be the quality factor
of the loaded CV. Taking into account that ai � bi, the total loss is
[31]

Pl ¼
1
2

x1ja1j2

Q 1
þx2ja2j2

Q 2

 !
: ð28Þ

From Eqs. (25)–(28) one comes to the important conclusion that
the overall Q factor of the coupled modes is a function of the indi-
vidual Qs of its resonant components. This is a different picture
that emerges directly from the CMT treatment. Normally for an
EPR spectrometer, one chooses a DR and a CV with approximately
the same resonance frequency to maximize their interaction. Spe-
cifically for the degenerate case, x1 = x2 = x0 and
ja1j ¼ ja2j ¼ jb1j ¼ jb2j ¼ 1=

ffiffiffi
2
p

, The quality factors of the coupled
modes become

Qþþ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jjj

p Q 1Q2

Q 1 þ Q 2
; ð29Þ
Fig. 6. The quality factor for an EPR probe consisting of a type II resonator inserted in
d1 = l1 = 1.3 � 2.1 mm resulting in a frequency change from 8.0 to 13.0 GHz. (a) Using CMT
on a logarithmic scale.
and

Qþ� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jjj

p Q 1Q 2

Q 1 þ Q 2
: ð30Þ

where Q++ and Q+� are the Q factors for the symmetric and anti-
symmetric modes respectively. From Eqs. (29) and (30) it is clear
that the two values are slightly different. The difference between
them is

Qþ� � Qþþ � 2jjj Q 1Q2

Q 1 þ Q 2
:

For a small j, the coupled Q reduces to

Q ¼ Qþþ � Qþ� � 2
Q 1Q 2

Q1 þ Q 2
: ð31Þ

Towards the end of this section, the CV and DR modes are
degenerate where it is assumed that Q++ = Q+� and are given by
Eq. (31).
a silver-plated cavity. The resonators’ dimensions were allowed to change from
. (b) Using HFSS. To accommodate the wide range of the Q values the y axis is drawn
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When there is a large difference between Q1 and Q2, Eq. (31)
predicts that

Q � 2 minðQ 1;Q2Þ: ð32Þ

Two limiting situations are of interest. The first is when
Q1	 Q2. It arises when the DR is lossy or houses a lossy sample.
In this case and according to Eq. (16), although the high dielectric
constant increases the filling factor of the probe, it is at the expense
of lowering the overall Q. This can be understood by referring to Eq.
(1). For unsaturated samples and provided that the power is kept
constant, the ratio of signal intensity of the coupled structure to
that of an empty cavity is

Iwith insert

Iempty
¼ gwith insert

gempty
� Q with insert

Q empty
: ð33Þ

The signal intensity Iwith insert is calculated at the frequencies of the
coupled modes while Iempty is calculated at the CV frequency x2.
In this situation and using Eqs. (32) and (16), the above expression
simplifies to

Iwith insert

Iempty
¼ g1

g2
� Q 1

Q 2
: ð34Þ

Thus the change in signal intensity due to the insertion of the DR is
dependent on the quality and filling factors of both resonant struc-
tures. Thus when designing experiments one must take into consid-
eration the effect of Q1 and Q2 in addition to the filling factors of the
resonating components. It is worth mentioning that a low Q is desir-
able in pulsed EPR spectroscopy shortens the probe’s dead time
which enables faster averaging.

The second situation is when Q1� Q2 for example, when the DR
is made of sapphire or a ceramic material. At constant power, using
Eq. (16) and noticing that Q � 2Qmin = 2Q2, the ratio of signal inten-
sity of the coupled structure to that of an empty CV is,

Iwith insert

Iempty
¼ g1

2
� 1
g2
� 2Q 2

Q 2
¼ g1

g2
: ð35Þ

In this case Iwith insert=Iempty depends only on the ratio of the filling fac-
tors. This is the optimal upper bound of signal enhancement.

For any Q value, Iwith insert=Iempty is obtained from Eqs. (31) and
(16), to give
Fig. 7. The quality factor for type I resonator. The cavity diameter is allowed to change f
7.5 to 11.7 GHz and dielectric loss tangent is 7.5 � 10�4.
Iwith insert

Icavity
� g1

g2

� �
� Q1

Q 1 þ Q2

� �
: ð36Þ
This general expression tends to Eqs. (34) and (35) when Q1	 Q2

and Q1� Q2 respectively. From a practical point of view, when
designing a probe one needs to maximize Iwith insert=Iempty. This may
be obtained by selecting a DR such that Q1� Q2 rendering the last
term in the right hand side of Eq. (36) effectively unity. For example
a TE102 cavity with Q2 
 3000 and m2 ¼ 9:5 GHz can be enhanced
using a ceramic resonator (muRata F series, DRT type) with a
Q1 
 35,000 and m1 ¼ 9:5 GHz. The coupling coefficient is estimated
to be �0.1 � 0.3 and the symmetric and anti-symmetric modes fre-
quencies to be �9.2 and 10 GHz respectively.

The expression of the quality factor given by Eq. (25), is applied
to three probe cases. The first is a probe made of a high er (high g)
type II DR inserted in low loss (high Q) cylindrical CV. The CV
dimensions are d2 ¼ l2 ¼ 4:1598 cm and its frequency is
fTE011 ¼ 9:5 GHz. It is silver plated and hence its Q2 � 32,000 and
the dielectric material has a loss tangent of 7.5 � 10�4

(Q1 = 1333.3) [30]. The second case is identical to the first in all as-
pects except that the DR loss tangent is 10�6 (Q1 = 106). The Q val-
ues for the two cases, calculated using CMT, are then compared to
those obtained using HFSS� finite elements simulator as shown in
Fig. 6a and b.

The figures show an excellent agreement between the CMT Q
obtained using Eq. (25) and that by HFSS simulation. In accordance
with Eqs. (29) and (30), when the two uncoupled modes are degen-
erate at � 9:5GHz, the Q of the coupled structure is approximately
double the minimum Q. In particular, it is equal to 2Q1 (2600)
when the DR has a loss tangent of 7.5 � 10�4 and equal to 2Q2

(60,000) for the other configuration (DR loss tangent = 10�6).
The third case involves a type I DR with a moderate er of 29.2. In

this case j is high and the overlap terms which were neglected in
the derivation of expression (25) are no longer small. This would be
even more prominent when the DR has an even lower permittivity
such as sapphire. Therefore, one needs to apply the general expres-
sions for the stored energy and power losses (22)–(24). These gen-
eral expressions still apply and give very accurate values for the
quality factors. For this configuration the cavity dimensions are al-
lowed to change from 3.4 cm to 5.4 cm. This corresponds to a span
rom d2 = l2 = 3.4 cm to d2 = l2 = 5.4 cm. The corresponding CV frequency ranges from
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of �2 GHz around the uncoupled degenerate frequency
(f � 9:7 GHz). The results are compared to HFSS� simulations, as
shown in Fig. 7.

In contrast to Fig. 6a and b where the quality factors approach
those of the uncoupled structures at the extreme right and left,
Fig. 7 shows that the system is still coupled in the range of 3.4–
5.4 cm. From Fig. 7, over a 4 GHz range the quality factor of the
symmetric mode varies from 1300 to 20,000 while that of the
anti-symmetric one goes only from 1300 to 10,000. This indicates
that the symmetric mode decouples more readily than the anti-
symmetric one. This corroborates the previous findings in Fig. 5
of Ref. [31].

Finally, in practical situations one needs to excite only one of
the coupled modes (either the symmetric or anti-symmetric).
There are three conditions to be fulfilled to efficiently excite a par-
ticular mode [30]. The field emanating from the exciting iris should
be collinear with the field of the mode. This depends on the geom-
etry of the iris which is beyond the scope of this paper. The field of
the mode should have enough strength at the vicinity of the iris.
Obviously this is large when the coupled mode has a significant
CV component and B1 at the sample. Lastly, the driving source’s fre-
quency should be within ±5BW = ± 5(f/Q) of the mode’s frequency.
Therefore, it is vital to calculate how well the two modes are sep-
arated. One way is to find the ratio of the difference between the
two coupled frequencies versus the average bandwidth or

U ¼ fanti � fsym

0:5ðBWsym þ BWantiÞ
:

The minimum separation distance between the coupled modes oc-
curs at the avoided crossing when the two modes are degenerate.
Noting that BW = f/Q, and Eqs. (29) and (30), one can find that U

U ¼ 2j
Q1Q 2

Q 1 þ Q 2
:

For type II ferroelectric resonators when the dielectric loss tangent
is 7.5 � 10�4, U is found to be �62. For type I resonators with the
same loss tangent, U is approximately 375. Therefore, the frequen-
cies of the two modes are well separated for both types of
resonators.

The case where the modes may overlap will only occur when
the permittivity is very high, the quality factor is low and the cou-
pling coefficient decreases according to Eq. (11). This is because for
the same frequency a DR with a high er must have a smaller S1 com-
pared to one with a lower er. From the relation given by (12), the
net result is a decrease in j.
4. Summary and conclusions

Using CMT, expressions for j, Q, and g of a probe consisting of a
cavity with a dielectric insert are obtained. The j is found to be
proportional to the square root of the relative permittivity as well
as to the overlap area. It is CMT values are compared to those de-
rived using the LCM in Ref. [30]. It is found that both methods are
in agreement when the uncoupled modes are degenerate. However
CMT j spans a larger range of values. The errors calculated using
both methods show that although both the LCM and CMT give
excellent results, the CMT is more accurate. The coupling coeffi-
cient of a cavity with a DR (er � 30) is an order of magnitude larger
than that of a DR with a very high relative permittivity (er � 261).
This is due to the increase in the overlap area, S1/S2. This also ex-
plains why, in the case of a shield (x2�x1), the anti-symmetric
mode has a significant dielectric component. Therefore, the dielec-
tric can be used to improve the cavity signal intensity.

A simple expression for g of the coupled system is derived.
When the resonators are degenerate, it is shown that coupled g
is the average of the two uncoupled ones. Moreover when design-
ing EPR probes, the CV filling factor is small and can be ignored. In
this situation, the coupled g is approximately half of that of the DR.

A closed form expression for Q of the coupled system was de-
rived. It was shown that the quality factor depends on the eigen-
vectors, uncoupled frequencies (x1, x2) and the uncoupled
quality factors (Q1, Q2). The expression is applied to the DR with
a high dielectric constant (er � 261) but with different loss tangents
(tan d = 7.5 � 10�4 and tan d = 10�6). The resulting values are found
to agree with the corresponding HFSS� simulations quite well.
Compared to that of the empty cavity and when the Q of the DR
is much smaller than that of the cavity, the coupled quality factors
decrease significantly. This affects the signal intensity. In general
when the resonators are degenerate, Q is approximately equal to
double the minimum of Q1 and Q2 provided there is a large differ-
ence between the two.

For relatively moderate dielectric inserts (er � 30), j is large.
Therefore, the overlap integral must be considered when calculat-
ing the quality factors. Taking this into account CMT is still capable
of calculating the quality factors especially near the degenerate
condition.

Based on the expressions derived for the quality and filling fac-
tors, the signal enhancement ratio, Iwith insert=Iempty, is also derived.
For low loss DRs Iwith insert=Iempty is only dictated by g1/g2 and is inde-
pendent of the quality factors. However, when the DR insert has a
low Q, both the uncoupled Qs and g s are needed to determine the
signal enhancement.

The separation between the modes, U, is calculated for the two
types of DRs in terms of j and Q. The separation between the fre-
quencies of the two coupled modes is significantly greater than five
times the average bandwidth. Consequently, exciting one coupled
mode will probably not excite the other one. However, if er in-
creases j decreases and Q of the DR insert is not large enough, then
the two modes may overlap.

The expressions derived in this article are quite general. Thus
they can be applied to the case of a loop-gap inserted in a cavity.
However, coupling with other CV modes may occur. This article
suggests that for effective EPR probe design, one needs to evaluate
the different parameters, j, g, Q and U. For example, a DR insert
with a low Q may negatively affect the signal intensity. Moreover
for extremely high DR loss tangents and/or for lossy samples, the
coupled modes may overlap. Therefore optimization of the above
parameters, using the equations derived here, is needed for the de-
sign of an efficient EPR probe.
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