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Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of
electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This
article studies the behavior of this system, based on the coupling between its dielectric and cavity modes.
Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this cou-
pled system. General expressions for the frequencies and field distributions are derived for both the
resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of fre-
quencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequen-
cies are studied in detail. Since the DR is situated within the cavity then the coupling between them is
strong. In some cases the coupling coefficient, j, is found to be as high as 0.4 even though the frequency
difference between the uncoupled modes is large. This is directly attributed to the strong overlap
between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise
ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromag-
netic fields are found to contain equal contributions from the fields of the two uncoupled modes. This
situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate
the results, finite element simulations are carried out. This is achieved by simulating the coupling
between a cylindrical cavity’s TE011 and the dielectric insert’s TE01d modes. Coupling between the modes
of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of
the coupled system are proposed. These expressions are crucial in the analysis of the probe’s
performance.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The coupling between a dielectric resonator (DR) and a con-
ducting cavity is of interest in electron paramagnetic resonance
(EPR) spectroscopy because of the signal to noise ratio (SNR)
enhancement of the resulting probe [1–4]. When both resonators
have the same resonance frequency, the size of the DR is much
smaller than that of the cavity. Therefore the magnetic field of
the DR is more concentrated in a much smaller spatial region. This
leads to an increase in the resonator’s filling factor [4]. Usually the
frequency of the dielectric TE01d mode and that of the rectangular
cavity’s TE102 mode (TE011 mode for cylindrical cavities) are close.
Two DRs inserted in a cavity allow the user to tune the frequency
of the cavity along with enhancing the SNR [3,5,6].

The coupling between the TE01d DR mode and the cavity’s TE011

mode was studied by Mett et al. [7]. They showed that the coupling
could be modeled by lumped circuit (LC) elements. Using the LC
model, crucial probe parameters such as frequencies, quality fac-
tors and resonator efficiencies were determined. The interaction
of the dielectric and cavity modes results in two new modes. A
symmetric (parallel) and an anti-symmetric (anti parallel) mode
[7]. The symmetric mode is the mode formed when the two elec-
tromagnetic fields add constructively in phase, while the anti-sym-
metric mode has a 180� phase shift between the two uncoupled
modes.

Using finite element simulations, the current authors showed
that the interaction between the TE01d modes of two DRs and a
TE102 cavity mode results in three coupled modes, where the most
appropriate mode for X-band EPR experiments was found to be the
TE+++ mode [6]. This mode is the result of the in-phase coupling of
the three uncoupled ones (the two TE01d Dielectric modes and the
TE102 cavity mode). In fact, it was illustrated that the fields of the
TE+++ mode is the linear superposition of the three uncoupled ones
[6]. The TE+�� mode does not have a cavity contribution. Accord-
ingly, this mode is very difficult to excite through the cavity iris.
As noted, the behavior of the coupled modes varies significantly.
Thus for EPR experiments one needs to have a comprehensive
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understanding of the modes’ characteristics, particularly their fre-
quencies and field distributions. Other field dependent parameters
are of interest as well. Accordingly, the aim of the current paper is
to thoroughly study the interaction of the modes of a single DR and
an enclosing cavity. Coupled frequencies as well as field distribu-
tions are analytically determined.

Generally, coupled mode theory (CMT) is used to analyze and
predict the behavior of a compound system by using the known
properties of its simpler components. CMT can be divided into
two main branches [8]. Space-coupled mode theory is useful in
studying the properties of transmission systems such as wave-
guides and fiber optical systems. On the other hand, temporal-cou-
pled mode theory is crucial in understanding the interaction
between multiple resonators and is therefore suitable for the cur-
rent work.

Usually CMT is applied to determine the frequencies (eigen-
values) of the coupled system. In the current manuscript, this step
is taken further by calculating the coupled fields (eigenvectors) too.
This is achieved by formulating the coupled mode equations from
the first principles, i.e. from Maxwell’s equations. By knowing the
coupled frequencies and the fields of the coupled systems, a better
understanding of probes with inserts can be achieved. Therefore, in
this article, general expressions for the eigenvalues (frequencies)
and the eigenvectors (fields) are calculated. The case when both
resonators have the same uncoupled frequency (degenerate) is
studied in detail. Other situations when the frequencies of the
two subsystems are not the same are also thoroughly investigated.
The results predicted by the coupled mode theory are compared to
those of an electromagnetic (EM) full-wave numerical finite ele-
ment simulator as well as to those found in the literature [7–9].

Section 2 defines the system and problem in a concise sense
where the notations and the electric fields are presented. The
eigenvalues and eigenvectors are derived in Section 3. This consti-
tutes the main core needed to study the coupled system. Section 4
investigates and discusses the results obtained for different cases.
The results are verified using finite element simulation. Summary
and conclusions are presented in Section 5.
2. Theoretical background

The system under consideration is shown in Fig. 1. It consists of
a DR, referred to as ‘‘1’’, inserted in the center of a cylindrical cav-
ity, referred to as ‘‘2’’. The holder, not shown in the figure, is of a
low loss/low permittivity material so its effect is negligible. Two
Fig. 1. System consisting of a DR inserted in a conducting cavity. The dielectric
insert is held inside a hollow low loss/low permittivity holder (not shown).
types of DRs with vastly different dielectric constants were used.
The first, labeled type I, with er = 29.2, d1 = 6 mm, l1 = 2.65 mm
and f � 9.7 GHz. The second labeled, type II, with er = 261 d1 =
1.75 mm, l1 = 1.75 mm and f � 9.5 GHz. The terms d and l are the
resonators diameter and height respectively. The cavity has an
aspect ratio of d2/l2 = 1.

The two uncoupled modes of interest are the dielectric TE01d

mode and the cavity TE011 mode. The electric field of each mode
can be written as [10],

Eu1 ¼ M1J1ðk1rÞ
cosðbzÞ r 6 d1

2 ; jzj 6
l1
2

e
al1
2 cos bl1

2

� �
e�ajzj r < d1

2 ; jzj >
l1
2

8<
: ð1Þ

and

Eu2 ¼ M2J1ðk2rÞ cos
pz
d2

� �
: ð2Þ

Here k1, k2 are the dielectric and cavity radial wave numbers
respectively. The symbol b is the wave number inside the dielectric
in the z direction, M1,2 are the fields’ amplitudes and Eui is the azi-
muthal electric field component. In deriving Eq. (1) a perfectly
magnetic waveguide was assumed [11]. In addition, k1 = p01/r1,
where p01 = 2.405 and is the root of the 0th order Bessel function,
J0(x). The symbol a is the attenuation factor, in the z direction, out-
side the DR resonator.

The magnetic field, which is the primary quantity that identifies
the performance of the probe, can be determined from the electric
field using Maxwell’s equations, i.e.

H ¼ � 1
jxl0

r� E;

where l0 is the permeability of free space and x is the resonant
frequency.

3. Theory

3.1. Derivation of the frequencies and fields by CMT

Using CMT, the fields of the coupled system are expressed as
linear superposition of the uncoupled ones,

E ¼ a1E1 þ a2E2; ð3Þ

H ¼ b1H1 þ b2H2; ð4Þ

The isolated mode of the DR satisfies Maxwell’s curl equations,

r� E1 ¼ �jx1l0H1; ð5Þ

r �H1 ¼ jx1e1E1;

where

e1 ¼
ere0 inside the dielectric material
e0 otherwise:

�

It incorporates the spatial variation due to the DR. The x1 symbol is
the dielectric mode angular frequency. The variables E1 and H1 are
the electric and magnetic fields respectively. Similarly, the cavity
mode satisfies

r� E2 ¼ �jx2l0H2 ð6Þ

and

r�H2 ¼ jx2e2E2;

where e2 = e0 is the permittivity of free space.
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For the coupled system the curl equations are written as

r� E ¼ �jxl0H

and

r�H ¼ jxeE ð7Þ

Here e is the permittivity of the coupled system. In this particular
case

e ¼ e1 ð8Þ

By substituting Eqs. (3) and (4) in r � ðE�i �HÞ, where (i = 1, 2), and
using identities Eqs. (5)–(7) one can find after integrating over the
cavity volumeX

k

xiðCik þ jMik � jSikÞbk �xAikak ¼ 0; ð9Þ

where

Cik ¼
Z

V
l0H�i �HkdV ;

Mik ¼
I
@V

E�i �Hk � d S
*

;

Sik ¼ �
I
@V

E�i �Hk � dS

and

Aik ¼
Z

V
eEi � EkdV

Since the tangential component of the electric field of the uncou-
pled cavity mode vanishes on the surface, then M2k = S2k = 0.

Similarly, by expanding r � ðE�H�kÞ in terms of the uncoupled
fields and integrating, one finds thatX

k

½�xCikbk þxiDikak� ¼ 0; ð10Þ

where Dik ¼
R

V eiE
�
i � EkdV . Using Eq. (8) then

A1k ¼ D1k

By integratingr � ðE�i �HkÞ over the cavity, the Cik and Dik terms can
be related as

x2C21 ¼ x1D�12 ð11Þ

and

M12 ¼ jx1C12 � jx2D�21: ð12Þ

The coupled modes can be then obtained by using Eqs. (9)–(12) and
solving an eigenvalue problem. It is approximated by

x2
1 �x2

2ðf12Þ
A11

�x2
1f12þðx2

2�x2
1ÞD21

A22
x2

2

2
4

3
5 a1

a2

� �
¼ x2 a1

a2

� �
; ð13Þ

where

f12 ¼ e0ðer � 1Þ
Z

DR
E�1 � E2dv ð14Þ

Here f12 is the overlap integral between the DR and CV. When the
two resonators have the same resonant frequency, x1 = x2 = x0,
Eq. (13) reduces to

x2
0

�x2
0f12

A11

�x2
0f12

A22
x2

0

2
4

3
5 a1

a2

� �
¼ x2 a1

a2

� �
ð15Þ

and by solving Eq. (15) the eigenvalues are found to be
x2 ¼ x2
0 1� f12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A11A22
p

� �

Therefore the coupling coefficient is given by

j ¼ f12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A11A22
p ð16Þ

Eq. (16) illustrates that the coupling coefficient depends on the
overlap integral given by Eq. (14). It is also proportional to the inter-
action energy of the dielectric polarization vector, P1 = (er � 1)e0E1,
with the cavity field E2. Although the coupling coefficient, shown by
Eq. (16), is expressed in terms of the overlap integral, f12, the cavity
still affects the DR by the surface current flowing on its wall, J2. In-
deed, using properties Eqs. (12) and (11) one can deduce that
(assuming that the system is lossless)

f12 ¼
T

2p

I
@V

E�1 � J2 dV

For the general case, when x1 – x2, and assuming that the two
frequencies are close enough such that ðx2

2 �x2
1ÞD21 	 x2

1g12, the
symmetric and antisymmetric frequencies are found to be

ðxþþÞ2 ¼ x2
1 þx2

2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 �x2
2

2

� �2

þx2
1x2

2j2

s
ð17Þ

and

ðxþ�Þ2 ¼ x2
1 þx2

2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 �x2
2

2

� �2

þx2
1x2

2j2

s
ð18Þ

respectively. It is worth mentioning that Eqs. (17) and (18) depict a
situation similar to that produced by perturbation theory in quan-
tum mechanics [8].Solving the eigenvalue Eq. (13) the eigenvectors,
a, are

aþþ2 ¼ 1
2j
ðc2 � 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4j2 ðc2 � 1Þ2 þ c2

r !
aþþ1 ð19Þ

for the symmetric mode and

aþ�2 ¼ 1
2j
ðc2 � 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4j2 ðc2 � 1Þ2 þ c2

r !
aþ�1 ð20Þ

for the anti-symmetric mode. Here c2 is equal to

c2 ¼ x1

x2

� �2

The above general expressions are applicable to a wide range of fre-
quencies (from MHz to THz).

4. Results and discussions

4.1. Eigenvalues and frequencies

To check the validity of the CMT analysis, the eigenvalue Eq.
(13) is solved for a DR of type I by the Maple 13™ suite of programs
(MapleSoft, a subsidiary of Cybernet Systems Co. Ltd.). The diame-
ter of the cavity is allowed to change from 2.5 to 5.5 cm with a step
of 1 mm, where d2 is kept equal to l2. The resulting frequencies are
plotted and compared to the simulated ones using the eigenmodes
solver in HFSS� (Ansys Corporation, Pittsburgh, PA, USA) as shown
in Fig. 2. The HFSS program uses finite element methods to numer-
ically solve for the electromagnetic fields and frequencies sub-
jected to the boundary conditions. For our simulations, the losses
did not significantly affect the results. The relative frequency



Fig. 2. Frequency of the symmetric and anti-symmetric modes due to the
interaction of the DR (er = 29.2, d1 = 6 mm, l1 = 2.65 mm) with the cavity (d2 = l2).
(a) Using CMT and (b) using HFSS.

Fig. 3. The magnitude of the electric field of the coupled system plotted against the
cavity radius.
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tolerance was taken to less be than 0.1%. The resulting figure shows
that there is an excellent agreement between the frequencies ob-
tained by the CMT and HFSS� methods.

Normally for a probe consisting of a DR in a small cavity
(shield), one considers the frequency shifts of the modes to be min-
or. In general, HFSS computations only give a numerical value for
the frequency. However, the analytical expression (17) derived
by CMT gives more insight. It shows that the frequency is depen-
dent on the coupling coefficient, j. In the case of the anti-symmet-
ric mode the deviation of the frequency from the uncoupled
structures could be quite significant. Indeed the coupling coeffi-
cient is the normalized overlap integral, as suggested by Eqs. (14)
and (16). Eq. (14) shows that as the cavity diameter decreases,
E�1 � E2 and the overlap integral increase. This leads to a larger cou-
pling coefficient. Thus for small cavities, the term x1x2j in Eq.
(17) is comparable to the term ðx2

1 �x2
2Þ=2 and thus cannot be ig-

nored. Hence the frequencies differ from the uncoupled frequen-
cies, x1 and x2. For example, a cavity with d2 = 2.5 cm its TE011

mode has a frequency of approximately 15.9 GHz. However, the
frequency of the anti-symmetric mode of the coupled system is
approximately 16.4 GHz. This 500 MHz shift is due to the increase
in j.

4.2. Eigenvectors

The behavior of the eigenvectors can be determined using Eqs.
(19) and (20). When the two resonators are degenerate (c2 = 1),
the eigenvectors for the symmetric mode reduce to

a1 ¼ a2 ð21Þ

and for the anti-symmetric mode

a1 ¼ �a2: ð22Þ

Eqs. (21) and (22) illustrate that the coupled modes contain equal
contributions from the two uncoupled ones. One should expect that
if the electric field of the coupled system is the vector sum of the
electric fields of the uncoupled subsystems, as given by Eq. (3), then
the radial variation of the magnitude of the electrical field will be
the sum of the two Bessel functions presented in Eqs. (1) and (2).
To verify the results of Eqs. (21) and (22), the magnitude of the elec-
tric fields for both the symmetric and anti-symmetric modes are
calculated, using HFSS� as a 3D finite element solver, and plotted
along the cavity radius in Fig. 3. In this case a DR of type II is used,
while the cavity’s diameter is equal to 4.1598 cm. These dimensions
guarantee that the DR and cavity have the same resonant uncoupled
frequencies of 9.5 GHz.

As observed from Fig. 3, the two modes have two peaks that
correspond to the two Bessel functions in Eqs. (1) and (2). Indeed,
the first peak is sharp and approximately occurs at the maximum
of the uncoupled TE01d mode (r = r1 = 0.875 mm) and the second
one occurs at the cylindrical cavity’s TE011 maximum point. This
confirms that when the two modes have the same uncoupled fre-
quencies, the coupled system contains a contribution from each
mode.

Moreover, Fig. 3 shows that for the symmetric mode the electric
has an appreciable value in the range of 0.0–5.0 mm. On the con-
trary, the electric field of the anti-symmetric mode has a node-like
behavior in the same region. This is due to the negative sign in Eq.
(22).

The filling factor is an important parameter because it directly
affects the spectrometer’s sensitivity. It depends on the magnetic
field values at the sample compared to the total magnetic field in
the whole probe. The magnetic fields of the coupled system are ob-
tained from Eq. (10) by calculating the bi coefficients in terms of
the ai coefficients. When the overlap integral is small, bi � ai. To
further assess the magnetic fields’ behavior of the coupled system,
the variation of the magnetic field intensity along the cavity axis
for the CV, DR and their coupled symmetric and anti-symmetric
modes are illustrated in Fig. 4.

For a DR in free space the magnetic field is highly localized and
is the largest. It is followed by the symmetric and anti-symmetric
modes respectively. The uncoupled CV field is the smallest, is
highly delocalized and spans one half wave length. This means
the filling factors of the symmetric and anti-symmetric modes
are substantially high but less than that of the DR in free space.
Fig. 4 also shows that due to the cavity component, the magnetic
fields of the coupled modes are significant in the region outside
of the DR given by (|z| > l1/2). This implies that the coupled modes
can be easily excited through an iris or a loop positioned a quarter



Fig. 4. Calculated magnetic fields along the cavity axis. (a) For the DR, CV (green
online), symmetric (blue online) and anti-symmetric (red online) modes calculated
using CMT. b) The anti-symmetric mode using CMT (red online) compared to HFSS�

(green online). (c) The symmetric mode using CMT (blue online) compared to HFSS�

(orange online). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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wavelength away from the center of the cavity upper, or side walls.
The minima of the magnetic field of the anti-symmetric mode
predicted by CMT in Fig 4b (red curve online) occurs closer to
the center from that calculated by HFSS� (green curve online). This
can be attributed to the fact that the field calculated using CMT re-
lies on the Cohn model given by Eq. (1) which assumes that the DR
is placed in a tight waveguide with perfectly magnetic walls.

In summary, this section demonstrates that the CMT used in the
current article can find field values and give a clear picture of their
distribution in probes.

The behavior of the cavity size on the probe’s coupled modes is
studied next. For a large cavity (x1 > x2), the limiting condition,
c2 ?1, can be used. Consequently the overlap integral decreases,
j ? 0 and Eqs. (19) and (20) reduce to
aþþ2 ¼ 1; aþþ1 ¼ 0 ð23Þ
aþ�1 ¼ 1; aþ�2 ¼ 0 ð24Þ
Fig. 5. The electric field of the anti-symmetric mode when the cavity is small
(2.4 cm � 2.4 cm). Note the change in the direction of the field in the vicinity of the
arrow.
Eqs. (23) and (24) imply that the two modes tend to decouple when
the cavity’s dimensions increase. This is of no surprise since the
coupled energy due to the cavity surface current (J2) and the dielec-
tric polarization vector (P1) have a smaller influence when the cav-
ity dimensions increase.
However when the cavity shrinks, the situation gets more in-
volved. In the limiting case when c2 ? 0, j increases. Eqs. (19)
and (20) then become,

aþþ1 ¼ 1; aþþ2 ¼ 0 ð25Þ
aþ�1 ¼ jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2
p ; aþ�2 ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j2
p : ð26Þ

Eq. (25) suggests that for small cavities, the symmetric mode tends
to the dielectric mode. Thus the influence of the cavity on the fre-
quencies and fields is minimal and it is considered a shield. These
minute second order frequency changes are due to j and the cou-
pled induced frequency shifts [12].

For the anti-symmetric mode, in Eq. (26), the two field compo-
nents from the cavity and dielectric are present. Thus even though
the two modes have different frequencies, the coupled system still
has contributions from both because j is considerably large. A typ-
ical value for the coupling constant in such cases is between 0.4
and 0.5. To numerically verify the findings of Eq. (26), the DR of
type I is inserted in a cavity with a frequency of 16.5 GHz
(c2 � 1/3) and the electric field is simulated using HFSS�. The
results are shown in Fig. 5.

Fig. 5 clearly shows that for small cavities, the anti-symmetric
mode is a mix of the two fields. Indeed as seen from the figure
and for small values of r, the fields’ values are predominantly DR.
However as r increases and because the cavity fields oppose that
of the DR, the fields get diminishingly small in the vicinity of the
arrow head in Fig. 5. For larger radius values, the fields’ direction
changes which is a clear indication that this mode is anti-symmet-
ric. Moreover in this region the fields are predominately cavity-
like. It is interesting to show that for such a case, the eigenvalue
Eq. (13) can be solved to find the total electric field for the modes
of the coupled system. In this case, the a1,2 and b1,2 are found to be
a1 � b1 = 0.41 and a2 � b2 = �0.92. Therefore using Eq. (3), the elec-
tric and magnetic fields of the coupled anti-symmetric mode are
equal to

E ¼ 0:41E1 � 0:92E2 ð27Þ

and

H ¼ 0:41H1 � 0:92H2 ð28Þ

This proves that there is a significant contribution from both
resonators. The DR component localizes the magnetic field. There-
fore the filling factor and the signal to noise ratio of the spectrom-
eter are improved.



Fig. 7. A small cavity (2.0 cm � 2.0 cm) where the dielectric TE02d mode couples
with the cavity TE011 mode.
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Up to this point, we have considered the specific asymptotic
cases when c2 ? 0 and c2 ?1. Next the behavior of the eigenvec-
tors is calculated for various cavity dimensions (i.e. different c2

values).
Fig. 6 depicts the ratio a2/a1 for a range of cavity diameters

(d2 = 2.5–5.4 cm). Starting with a small cavity, the symmetric mode
is predominantly DR in nature and is practically decoupled from
the cavity. The cavity in this case is considered as a shield. On
the other hand, the anti-symmetric mode is a mix of the two com-
ponents. As the cavity dimensions increase, the symmetric mode
gains TE011 character. On further increase it rapidly decouples
and becomes cavity-like. This is clearly observed when its diameter
is greater than 4.4 cm. For the anti-symmetric mode, the cavity
decouples from the DR and the mode becomes DR-like in nature.

4.3. Coupling of a shield with higher DR modes

When x2
1 	 x2

2, i.e. c2 	 1, the coupling between the cavity
TE011 mode and the other dielectric higher modes, for example
the TE02d, is small. This is because the eigenvectors are given by
Eqs. (23) and (24) where the two modes decouple. Another reason
is that for small values of r, the radial component of cavity fields
given by Eq. (2) inside the dielectric material can be approximated
as [13]

J1ðkcrÞ � kcr
2

For instance, the radial component of the overlap integral of the
cavity TE011 and the TE02d dielectric modes, is proportional toZ rd

0
J1ðkcrÞ : J1ðkdrÞdr �

Z rd

0

kcr
2
: J1ðkdrÞdr: ð29Þ

Since for higher order dielectric modes, J1(kdr) changes sign over
the dielectric insert radius, the integration in Eq. (29) is small
which leads to a small j.

When the cavity dimension is decreased to the limit where the
frequency of one of the higher dielectric modes (e.g. the TE02d

mode) is close to the cavity TE011 mode then x2
1 � x2

2 (c2 � 1),
and coupling is observed. For example, if the cavity’s diameter is
decreased down to 2.0 cm, its TE011 frequency,fTE011 � 20 GHz,
which is close to the TE02d frequency, estimated to be � 22 GHz.
Therefore, the resulting coupled mode has a TE02d component as
Fig. 6. The ratio |a2/a1| which is an indication of how the fields decouple. When it is
small the mode is more like a dielectric mode and when it is large this indicates that
the fields are cavity-like.
shown in Fig. 7. Here, one can see that inside the DR the field direc-
tion changes. This observation indicates that, inside the DR, the
mode is predominantly TE02d. Similarly at the region outside the
DR, the mode is predominantly TE011.

By considering the coupling of the cavity with higher order
modes, with the appropriate dimensions and frequency mentioned
in the previous paragraph, it is possible to design a TE011/TE02d

probe that operates in the range of 19–23 GHz. The probe would
also have a high filling factor due to the dielectric insert.

For any dimension, an approximate closed form expression for
the electric field can be obtained. If the dielectric TE01d mode fields
are calculated from Eq. (1) using the Cohn model [11], and the cav-
ity electric field is calculated from Eq. (2), the electric field of the
coupled system becomes,

Eu¼ a1J1ðkdrÞ
cosðbzÞ r6 d1

2 ; jzj6
l1
2

e
al
2 cos bl1

2

� �
e�ajzj r< d1

2 ; jzj>
l1
2

8<
: þa2J1ðkcrÞcos

pz
d2

� �

For type I resonators: b = 657 m�1, a = 778 m�1 while for type II:
b = 1293 m�1 and a = 2742 m�1. The eigenvectors’ components a1 and
a2 are easily determined from Eqs. (19) and (20).

4.4. Comparison between CMT and the LC model

Mett et al. have calculated the frequencies for the two modes of
a DR in a cylindrical cavity using the LC model [7]. The cavity
dimension was held constant d2 = l2 = 4.1598 cm and the DR was
of type II where the diameter was allowed to vary from 1.3 mm
to 2.1 mm. The frequencies of both the symmetric and anti-sym-
metric modes were determined by calculating the capacitances
and inductances [7]. Excellent results were obtained when com-
pared with HFSS� simulations.

These results have prompted us to compare the performance of
the CMT and LC methods. In the current paper, the same circuit
model in [7] is solved but, to avoid redundancy, a type I resonator
is used instead of a type II. The cavity’s diameter is allowed to
change from 2.5 cm to 5.5 cm. Using HFSS� simulations as a refer-
ence, the errors in the frequencies of both the symmetric and anti-
symmetric modes are calculated by the two techniques. Although
the DRs considered by Mett et al. and the one used here have vastly
different dielectric constants (er � 261 and er � 30 respectively) the
LC model gives excellent results, over the range of 2.5 cm to 5.5 cm,
with errors that are still below 5%. Coupled mode theory gives even
better results in the same range with errors less than 1.5%.

In most practical cases the DR has a hole to accommodate the
sample. The above results and discussion in this article will also
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be valid in this case. In such a situation the frequency will slightly
increase and the coupling coefficient will decrease due to the
reduction of the overlap integral f. Because of the minor change
in the DR frequency, its coupling with higher order modes is ex-
pected to be small.
5. Summary and conclusions

The frequencies and fields for a cavity with a high dielectric in-
sert were studied using CMT. It was shown that the coupling coef-
ficient is the normalized overlap integral. Physically, the dielectric
insert affects the cavity by its polarization vector while the cavity
injects energy into the dielectric mode through its surface current.
Both effects were proven to be equal. General expressions for the
eigenvalues, frequencies, eigenvectors and fields, both for the sym-
metric and anti-symmetric modes, were obtained.

There is excellent agreement between the frequencies obtained
by CMT and HFSS

�
. While HFSS computations only give a numerical

value for the frequency, the analytical expressions derived in this
article by CMT give more insight. They show that the frequency
is dependent on the coupling coefficient, j. As the cavity diameter
decreases, E�1 � E2 and the overlap integral increase. This leads to a
larger coupling coefficient. Consequently the frequencies differ
from the uncoupled frequencies. In the case of the anti-symmetric
mode the deviation of the frequency from the uncoupled structures
could be as large as 500 MHz.

For different cavity dimensions, the expressions for the eigen-
vectors were used to study the fields’ behavior of the coupled
modes. It is shown that for large cavities (x2
x1) the two modes
tend to decouple. However for small cavities (x1
x2), the cou-
pling coefficient is large. From the eigenvectors point of view, the
symmetric mode tends to be dominantly dielectric which means
that the cavity acts as a shield. However, the anti-symmetric mode
is always a mix of the two uncoupled modes. This observation was
verified using the HFSS� eigenmodes solver. Here the coupling be-
tween the cavity’s TE011 and the insert’s TE01d modes were exam-
ined. It was observed that indeed the anti-symmetric mode has a
dielectric insert component. The presence of the dielectric mode
in the anti-symmetric mode implies that, in general, the signal to
noise ratio of the spectrometer is improved.

Normally, the coupling between the cavity TE011 mode and
other dielectric insert higher modes is usually small. However
when the cavity’s dimensions shrink to a level where the frequency
of one of the higher order modes (for instance the dielectric TE02do

mode) gets closer to the cavity TE011 mode coupling occurs. This
was also verified using HFSS� eigenmodes solver. By choosing
the appropriate dimensions and frequency, it is possible to con-
struct a TE011/TE02d probe for a 19–23 GHz EPR spectrometer. Due
to the dielectric insert, the probe would possess a high filling
factor.

Coupled mode theory predicts that when the two resonators are
degenerate (x1 = x2) the coupled modes are perfect combinations
of the two uncoupled ones. Finite element simulations showed that
the magnitude of the electric field along the cavity radius has two
peaks. This verifies that the coupled modes are composed (linear
combination) of the two uncoupled ones. Accordingly, the modes
can be easily excited through an iris on the cavity walls. In addi-
tion, the filling factor has a lower value when compared to that
of the dielectric in free space. This is because the electric field is
delocalized in the cavity. Thus, when designing probes for electron
paramagnetic spectroscopy, the coupling between the two struc-
tures should be taken into account.

Finally the frequencies of both the symmetric and anti-symmet-
ric modes, calculated using CMT, are compared to those deter-
mined by the LC model [7]. The LC model shows that the error in
frequency for moderately high epsilon inserts (er � 30) is below
5% while CMT gives a maximum error bound of 1.5%.

From an experimental point of view, it is necessary to have a
spectrometer with the highest sensitivity to detect dilute and weak
samples. The sensitivity is directly related to a large resonator effi-
ciency, K. This in turn is a function of the quality and filling factors
[1,14,15]. In this article CMT is used to calculate analytical expres-
sions for the magnetic fields. Compared to an empty CV, the fields
of a probe consisting of a DR and a CV, are more localized in the
vicinity of the sample which lead to a higher filling factor and con-
sequently a higher sensitivity. From a different perspective, the CV
component of the coupled modes provides an easy way to couple
the probe to the microwave bridge via the CV iris. A shield can
be considered as a cavity of smaller dimensions. It resonates at
higher frequency and does not significantly affect the DR mode.

The findings and expressions in this article are general and can
apply to any frequency range. They also apply whether the reso-
nance is electronic or nuclear. For high frequency/high field EPR,
the dielectric constant may significantly change with frequency.
Hence, the solutions of the eigenvalue equation become more
complicated.

The analysis here can be repeated for a LGR. However unlike a
DR, the situation is slightly more complicated. An LGR has an
inductive part represented by the loop. Thus a LGR may inductively
couple with other TM modes (for example the TM111) mode which
is degenerate with the TE011.
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