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The theory and operation of various devices and systems, such as wireless power transfer via

magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy

probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually

expressed in terms of the coupling coefficient j, which can have electrical jE and/or magnetic jM

components. In the current article, general expressions of j are derived. The relation between the

complex Poynting equation in its microscopic form and j is made and discussed in detail. It is

shown that j can be expressed in terms of the interaction energy between the resonators’ modes. It

thus provides a general form that combines the magnetic and electric components of j. The expres-

sions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily

oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such

as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron

spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials

structures. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935634]

I. INTRODUCTION

To design efficient electron paramagnetic resonance

(EPR) probes,1–4 magneto-inductive devices,5,6 wireless

power transfer via inductively coupled resonators,7–11 stereo-

metamaterials,12 and microwave filters,13 it is essential to cal-

culate and fully understand the coupling between its resonant

components such as cavities, dielectric resonators, split-rings,

micro-strips, and loop-gap resonators. The coupling coeffi-

cient j is the main parameter that quantifies the coupling

strength. There are various definitions of j but they all revolve

around the concept of energy exchange between resona-

tors.14,15 j has the effect of removing the degeneracy by split-

ting the frequencies of the coupled modes. It also appears as

off-diagonal or non-secular terms in eigenvalue problems.

For lumped circuit models, the coupling mechanism is

modelled by introducing a mutual capacitance (Cm) and/or

inductance (Lm). Depending on the relative polarity of the

mutual elements, the coupled frequency can be quantified by

calculating j16,17

j ¼ jM6jE ¼
Lm

L
6

Cm

C
: (1)

Here L and C are the inductance and the capacitance of the

uncoupled resonators, respectively. The sign between the

two terms is determined by the relative orientation and struc-

ture of the resonators.

Expressing (1) in terms of the electromagnetic fields E
and H is problematic. For example, Hong extended (1) by

noticing that the mutual terms can be expressed by the

overlap of the two corresponding fields. Thus, Cm was

replaced by
Ð

V�E
�
1 � E2 dv and Lm by

Ð
VlH�1 �H2 dv. The sign

between the two terms was chosen to be positive,18,19 i.e.,

j ¼ jM þ jE (2)

or

j ¼
Ð

VlH�1 �H2 dvþ
Ð

V�E
�
1 � E2 dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ

�jE1j2 dv�
Ð
�jE2j2 dv

q : (3)

On the contrary, based on a coupled mode formalism, Awai

and Zhang derived expressions for j which is in favor of

using the negative sign,15,20 i.e.,

j ¼ jM � jE (4)

or

j ¼
Ð

VlH�1 �H2 dv�
Ð

V�E
�
1 � E2 dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ

�jE1j2 dv�
Ð
�jE2j2 dv

q : (5)

Using Lagrange’s equation of motion, it was demon-

strated that the interaction between two split-ring resonators,

which form a meta-dimer, depends on the difference between

the two terms. In this case, the coupled energy was expressed

in terms of the surface charge and current densities.21–23

Equations (2) and (4) cannot be assimilated together by

merely changing the phase of the resonant modes.

As pointed out, (4) and (5) are valid for conducting reso-

nators only. However, for dielectric resonators, j takes the

form15a)Electronic mail: mattar@unb.ca
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j ¼
Ð
�0 �r1 � 1ð ÞE�1 � E2 dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
�jE1j2 dv�

Ð
�jE2j2 dv

q : (6)

The physical origin and general expressions for j, which

are valid for both conducting and dielectric resonators, have

practical applications for scientists and engineers. For exam-

ple, the ever increasing performance in the computational

domain in terms of processing speed and storage makes it

possible to numerically calculate the fields and frequencies

of the modes of uncoupled resonators. The field values can

be used to determine the coupling coefficients where the rel-

ative orientations of the resonators can be arbitrary and thus

enables the study and design of complex systems. This is to

be compared with lumped circuit models, where the calcula-

tion of Cm and Lm can be challenging and are usually com-

plex functions of the resonators’ positions and orientations.

Starting from Maxwell’s equations, Energy Coupled

Mode Theory (ECMT), a coupled mode formalism in the

form of an eigenvalue problem, was derived. The eigenval-

ues and eigenvectors determine the coupled eigenmodes,

which were proven to obey the resonance condition.24 The

method can be considered as the electromagnetic analog of

Molecular Orbital Theory.25 It was used to study an EPR

probe which consists of a cavity with a dielectric insert.2 In

this interesting case, j of the dielectric TE01d and cavity

TE011 modes was found to be relatively large (�0.4).

Moreover, expressions for fields-dependent parameters, such

as the quality factor, filling factor, and probe efficiency, were

obtained.3,4 The interaction between the dielectric and cavity

modes was later applied to design efficient EPR probes

working at low temperatures (6 K).26

In the current article, ECMT is used to find general

expressions for j which reduce to (4) and (6) when applied

to conducting and dielectric resonators, respectively.

Moreover, the physical origin of j follows naturally from the

derived expressions.

This article is organized as follows: In Section II, the

Poynting theorem is used to obtain useful relations which

will be used in subsequent sections. The physical meaning of

relevant terms is highlighted. Sections III, IV and V repre-

sents the basic foundations, where expressions of j are

derived. In Section IV, the physical origin of j is discussed.

Section V applies the derived expressions to different cases

and scenarios. Finally, the conclusions follow in Section VI.

II. THEORETICAL BACKGROUND

In the current article, the inner product of two vector

fields is formulated using Dirac bra-ket notation. For exam-

ple, the inner product of A and B is denoted by hAjBi and is

defined by

hAjBi �
ð

V

A� � B dv;

where V is the total volume and K* is the complex conjugate

of K. Clearly hAjBi� ¼ hBjAi.
The dielectric constant of resonator u is a function of the

spatial coordinates and is denoted by �u. For two coupled

resonators 1 and 2, the coupled dielectric constant is denoted

by � and is equal to max (�1, �2).

A. Energy interaction terms

Since coupling primarily depends on reactive compo-

nents (for example, in lumped circuit models it depends on

Cm and Lm), only the reactive fields are considered. As previ-

ously mentioned, the concept of coupling revolves around

the “energy” keyword. Thus, it is convenient to start from

the conservation of energy. Because ECMT is formulated in

the frequency domain, the complex Poynting theorem is

used,27

� 1

2

ð
@V

E�H� � dS� 1

2
hJjEi ¼ 2jx hWMi � hWEið Þ: (7)

Here hWMi and hWEi are the average magnetic and electric

stored energy, respectively. It is useful to re-write (7) in

terms of the maximum stored energy. Thus,

� T

4p

ð
@V

E�H� � dSþhJjEi
� �

¼ j max WMð Þ�max WEð Þð Þ;

(8)

where T¼ 2p/x is the oscillation period. The energy term

max(WE) takes into account the energy stored in the dipole

moments (i.e., (8) is in the macroscopic form).28 The contri-

bution of the materials, represented by the electric dipole

P ¼ �0ð�r � 1ÞE, can be separated from max(WE), thus lead-

ing to the microscopic form of the Poynting theorem

� T

4p

ð
@V

E�H� � dSþ hJjEi
� �

þ j

2
hPjEi

¼ j max WMð Þ �max W0
E

� �� �
; (9)

where maxðW0
EÞ ¼ 1

2
h�0EjEi is the electric energy stored in

free space. ð�T=4pÞ
Ð
@VE�H� � dS is the maximum energy

entering the volume V (it can also be regarded as the energy

due to the equivalent current sheet n̂ �H), �ðT=4pÞhJjEi is

the maximum energy that the current J exerts on the system,

and �hPjEi is the maximum potential energy (PE) stored in

the moment P.

As will be seen later in Section III, the j expressions are

strongly related to the microscopic form (9). To better under-

stand (9), correspondence relations with a frictionless mass-

spring system driven by a sinusoidal force, FD ¼ F0 sin xt,
have been made. A full and detailed discussion, relevant to

the present analysis, of the frictionless mass-spring system is

given in the Appendix. Equations (8) and (9) are similar to

the work energy relationship (A4). The magnetic energy WM

corresponds to the PE, W0
E corresponds to the kinetic energy

(KE), and the reactive energy �ðT=4pÞð
Ð
@VE�H� � dSþ

hJjEiÞ is equivalent to the reactive work exerted by or on the

source (
Ð xðt¼T=4Þ

xðt¼0Þ FDdx). Noting that there is a 90� phase shift

between WM and W0
E, (9) can be explained as follows: The

energy oscillates between the magnetic and electric fields.

After quarter of a cycle, the maximum magnetic energy

max(WM) is converted into three main components. The first

is the electric energy stored in V, maxðW0
EÞ. The second

194901-2 Elnaggar, Tervo, and Mattar J. Appl. Phys. 118, 194901 (2015)
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component is the energy returned to the equivalent sources

�ðT=4pÞð
Ð
@VE�H� � dSþ hJjEiÞ. The third is the electric

energy stored in the dielectric material 1=2ðhPjEiÞ. Fig. 1

depicts a hypothetical system which has a dielectric material

(P) and a current element (J). As mentioned above, the

energy crossing the boundary @V, can be considered as the

interaction of the electric field E and an equivalent current

sheet n̂ �H. This energy component can be set to zero if the

volume is large. In another words, the total reactive field is

enclosed in V.

B. Energy cross terms

According to ECMT, the electric and magnetic fields of

the coupled system are the superposition of the uncoupled

fields, i.e.,

E ¼
XN

u¼1

auEu (10)

and

H ¼
XN

u¼1

buHu: (11)

Using (10) and (11), the energy terms in (9) can be written

as

ð
@V

E�H� � dS ¼ atM�b�; (12)

hJjEi ¼ b†N�a; (13)

and

hPjEi ¼ a�Pa: (14)

Here Muv ¼
Ð
@VE�u �Hv � dS; N uv ¼ hEujJvi (Ref. 24)

and Puv ¼ hPujEvi. For non-magnetic media, if Guv

� hl0HujHvi andDuv � h�uEujEvi, it was shown that24

Muv þN uv ¼ jx0ðGuv �D�vuÞ: (15)

Expanding the stored energy terms WM and WE in terms of

the uncoupled fields given by (10) and (11) and using (15), it

can be shown that

j
T

4p
M�

uv þN
�
vu

� �
þ 1

2
Pvu ¼ max WMð Þvu �max WEð Þ0vu

h i
;

(16)

where maxðWMÞvu ¼ 1
2
hl0HkjHii and maxðWEÞ0vu ¼ 1

2

h�0EvjEui are the (u, v) free space magnetic and electric

coupled energy components, respectively.

III. ANALYSIS

In this section and based on ECMT, general expressions

for the coupling coefficient of two tuned coupled resonators

are derived. For the coupled system, the eigenvalue problem

of two tuned (degenerate) resonators can be written as24

x2
0A
�1D†G�1Da ¼ x2a; (17)

where Auv � h�EujEvi ¼ 2maxðWEÞuv and x0 is the

uncoupled angular frequency. Usually for weakly

coupled resonators, A11A22 	 A12A21; G11G22 	 G12G21,

and Auu � Duu � Guu. These approximations simplify the

eigenvalue equation (17) to

x2
0 x2

0

D12�G12þD�21�A12

A11

x2
0

D21�G21þD�12�A21

A22

x2
0

0
BBB@

1
CCCAa¼x2a:

(18)

The coupling coefficient j is the negative of the off di-

agonal term divided by the on diagonal one. In lumped cir-

cuits this is equal to Cm=
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p
or Lm=

ffiffiffiffiffiffiffiffiffiffi
L1L2

p
(Ci and Li are

the capacitance and inductance of the ith resonator, respec-

tively). In the case at hand j is equal to

juv ¼ �
Duv � Guv þD�vu �Auv

Auu
; (19)

where Duv þD�vu�Auv ¼
Ð

Vð�u þ �v � �ÞE�u � Ev dv ¼
Ð

V�bg

E�u � Ev dv and losses are ignored. Here �bg� �uþ �v � � is

the background dielectric profile. Therefore, the coupling

coefficient of any two arbitrary tuned resonators is

juv ¼
Ð

V l0H�u �Hv � �bgE�u � Ev
� �

dvÐ
V�jEuj2 dv

: (20)

Expression (20) looks similar to (4) and (5) derived for

conducting resonators.15 However, (20) depends on the back-

ground permittivity which, as will be shown in Sections IV

and V, makes (20) general and valid for any type of resona-

tors. Moreover, the right hand side of (20) proves that for

normalized modes (the modes amplitudes are chosen such

that Auu ¼ Avv), juv and jvu form a conjugate pair, i.e.,

juv ¼ j�vu: (21)

FIG. 1. A system which contains dielectric and conducting components. The

energy is stored in various components as well as crossing the boundary

surface.
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IV. PHYSICAL ORIGIN OF THE COUPLING
COEFFICIENT

Although (20) is general and can be used to calculate j
for arbitrary resonators, it does not explicitly show the

energy interaction terms as described by (9) and (16). To

express j in terms of energy components, (15) is used. Thus

for normalized modes, (19) is re-written as

juv ¼
Puv=2þ jT=4p M�

vu þN
�
vu

� �
max WEð Þuu

: (22)

Equation (22) reveals the physical origin of juv. The cou-

pling coefficient juv is then equal to the maximum work that

the elements ðPu; n̂ �Huj@V and JuÞ of resonator u exerts on

resonator v. This is valid regardless of the type of resonators

(dielectric, conducting or both).

It is worthy of notice that (20) and (22) are valid for

wide ranges of frequencies. The eigenvalue problem (17)

was obtained for arbitrary resonators with an arbitrary angu-

lar frequency x. It was shown that accurate values of the

coupled frequencies and fields can be obtained up to the sub-

millimeter regime when the quality factors are relatively low

due to radiation.24 For higher frequencies, particularly when

the resonant frequencies are close to the plasma frequency,

at which � and hence A are strong functions of x, the solu-

tion of (17) will be more involved.

V. RESULTS AND DISCUSSION

In the following, the equivalent general expressions

(19), (20), and (22) will be applied to different systems. The

results will be compared with Finite element simulations and

other results found in the literature. Without loss of general-

ity, the volume V is taken to be large enough such that

Muv � 0. In this case (22) can be written as

juv ¼
Puv=2þ jT=4pN�vu

Auu=2
: (23)

A. Coupling between conducting resonators

Conducting resonators appear in various systems and

devices. For example split-ring resonators are the building

blocks of metamaterials.29 They are also used in filters.19

Loop-gaps are used to enhance the signal of EPR probes.30

The common theme here is that Puv¼ 0. In such cases

�bg¼ �0 and from (20)

juv ¼ j�vu ¼
Ð

V l0H�u �Hv � �0E�u � Evð Þ dvÐ
VE�u � Eu dv

; (24)

which is equivalent to the formula derived using Coupled

Mode Theory15,20 and Lagrange’s equation of motion.22 The

difference between the two terms in the numerator of (24)

was previously attributed to the counter effect of the mag-

netic and electric dipole moments.31,32 As was previously

shown24 and according to (23), the coupling is the result of

the interaction of the fields of resonator u with the current of

resonator v. Equation (24) was previously verified for

different structures.15,22 To reinforce the validity of (24), j
of the two tuned loop-gap resonators, shown in the inset of

Fig. 2, is calculated for different separation distances d. The

results are then compared with the formula found in Ref. 19

(j¼jMþjE) and to the frequency splitting formula

jx ¼
x2
þ� � x2

þþ
x2
þ� þ x2

þþ
: (25)

The symmetric and anti-symmetric angular frequencies (xþþ
and xþ�) are calculated using the HFSS

VR

Eigenmode solver

(Ansys Corporation, Pittsburgh, PA, USA). Using the solver,

the resonant frequency and fields of the single, uncoupled

loop gap were computed and exported into a MATLAB
VR

code which calculates the overlap integrals in (24). Fig. 2

verifies that j is the difference between jM and jE. Because

the electric field is concentrated in the gaps, jE is always

smaller than jM. When d increases, both terms monotonically

decrease and approaches zero. However, for a finite distance

d, the condition: jM¼ jE will never be satisfied.

To achieve the condition jM¼jE, the eigenmodes of

two tuned coplanar double split ring resonators, shown in

Fig. 3, are computed. This arrangement makes it possible to

scan for the angle / at which j¼ 0.

When / ¼ 0� or / ¼ 90�, the coupling is strong. Figs. 4

and 5 show the coupled surface current density for both cases.

FIG. 2. The coupling coefficient calculated for two coupled loop gap resona-

tors. The uncoupled frequency of each resonators is 9.79 GHz. The outer di-

ameter D ¼ 5 mm, inner diameter / ¼ 4 mm, height h ¼ 1 mm, and gap

thickness t ¼ 0.8 mm.

FIG. 3. Two tuned coupled double split ring resonators. d ¼ 0.2 mm, c ¼
0.8 mm, r ¼ 1.5 mm, w ¼ 0.3 mm, t ¼ 50 lm, and the resonant frequency f0
� 4.8 GHz.

194901-4 Elnaggar, Tervo, and Mattar J. Appl. Phys. 118, 194901 (2015)
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The linearity of Maxwell’s equations makes it possible to

scale the fields of the eigenmodes by multiplying them by an

arbitrary complex number. Hence the values in Figs. 4 and 5

are expressed in arbitrary units. It is worth mentioning that the

difference in the current direction in Figs. 4 and 5 (180� phase

shift) is due to the complex number multiplication and has no

effect on the analysis, since the ratio of the amplitudes and

difference in phases between any two given points are always

preserved. For the / ¼ 0� situation (Fig. 4), the coupling is

predominately electric due to the overlap of E1 and E2. On

the contrary, it is predominately magnetic when / ¼ 90�

(Fig. 5). The symmetric mode corresponds to the situation

where the two modes are in phase.2 Thus, the currents on all

rings circulate in the same direction, as the arrows in Figs. 4

and 5 show. This has the effect of an enhanced magnetic

dipole (top plots in Figs. 4 and 5). Accordingly, the mode can

be coupled to an external electromagnetic wave via the mag-

netic field component orthogonal to the rings plane. On the

contrary for the antisymmetric mode, the currents on the rings

circulate in opposite directions (bottom plots in Figs. 4 and 5)

and thus the mode has a zero net magnetic dipole and can cou-

ple to the external electromagnetic wave via the net electric

dipole moment in the gaps. Therefore, it can be deduced that

the symmetric (antisymmetric) mode corresponds to a mag-

netic (electric) type resonance.33,34 Unlike the situation

depicted in Fig. 2 at some rotation angle /0, j vanishes.

Using the finite element simulation, we found that /0 ¼ 15�.
At this angle, the symmetric and anti-symmetric modes

decouple as Fig. 6 presents.

The physical origin of why the decoupling between the

two resonators occurs can be revealed by referring to (23).

Noting that Puv ¼ 0, j can be written as

j ¼ j
T=4phJujEvi
Auu=2

: (26)

The decoupling occurs when j¼ 0 or, equivalently, the elec-

tric field of resonator u is orthogonal to the surface current of

resonator u (hJujEvi ¼ 0). In another words, there is no inter-

action between the two resonators. This is true even though

jE and jM 6¼ 0.

B. Coupling between two dielectric resonators

In this subsection, an expression for j due to the cou-

pling of two dielectric resonators is derived and then used to

calculate the coupled frequencies (xþþ and xþ�). For

FIG. 4. The surface current density of the (top) symmetric mode and (bot-

tom) anti-symmetric mode of two tuned coupled split ring resonators for an

angle / ¼ 0�.

FIG. 5. The surface current density of the (top) symmetric mode and (bot-

tom) anti-symmetric mode of two tuned coupled split ring resonators for an

angle / ¼ 90�.

FIG. 6. The surface current density (top) of the symmetric (bottom) and the

anti-symmetric modes due to the coupling of two tuned coupled double split

ring resonators when / ¼ 15�.
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purely dielectric resonators, J¼ 0. Therefore according to

(23), juv can be expressed as

juv ¼
Puv

Auu
¼
Ð

Vv �u rð Þ � 1ð ÞE�u � EvdvÐ
V�jEuj2dv

: (27)

Equation (27) agrees with the findings of Refs. 15 and 35. As

a further verification of (27) and the coupled mode equation

(17), the symmetric and anti-symmetric frequencies due to

the coupling of the dielectric resonators TE01d modes are

calculated and compared to High Frequency Structural

Simulator (HFSS) simulations as shown in Fig. 7.

The agreement between the frequencies calculated using

ECMT and finite element simulations verifies the validity of

(17) and (27). For the configuration depicted in Fig. 7, j
does not vanish for any finite distance d. However, if the

coupling is between the TE01d mode of one dielectric resona-

tor and the higher order mode of the other resonator, hEvjEui
may vanish.

C. Coupling between a dielectric and a conducting
resonators

As a final example, an expression for j due to the cou-

pling between a dielectric resonator and a cavity is obtained.

Hereafter, the dielectric resonator is labelled as Resonator 1
and the cavity as Resonator 2. Applying (23) and noting that

P21 ¼ 0 andN 21 ¼ 0, one can find that

j12 ¼
P�12

A11

(28)

and

j21 ¼
j

x0

hJ2jE1i
A11

: (29)

Although (28) and (29) look different, basically they

have the same magnitude (refer to Eq. (21)). This means that

the interaction energy between the dielectric dipole vector

�0(�r � 1)E1 and the cavity electric field E2 is the same as

the energy due to the coupling of E1 and the surface current

on the cavity walls. Figs. 8 and 9 depict the relevant fields

when the interaction is between the dielectric’s TE01d and

the cavity’s TE011 modes. Due to the reciprocity relation

(21), any of the two formulas (28) or (29) can be used to

determine the coupled modes. However, it might be more

convenient to use one formula than the other. For instance,

the electric field E1 of the TE01d can be estimated using the

Cohn Model.2,36 The main assumption of the Cohn model is

that the dielectric resonator is held inside a magnetic wall

waveguide and thus ignores the diffraction of the fields as

they extend outside the dielectric material. Hence, the esti-

mated fields are not accurate outside the dielectric material.

Accordingly, it is more convenient to use (29) because the

calculated E1 is already available.

Table I presents the calculated frequencies of the sym-

metric and anti-symmetric modes which result from the cou-

pling of a cylindrical cavity TE011 and dielectric resonator

TE01d modes. The calculation is carried out using two dielec-

tric resonators. The first is with a moderate �r, while the other

has a very high dielectric constant (�r¼ 261). From the table,

it is clear that treating the coupling as an interaction between

FIG. 7. The frequencies of the symmetric and anti-symmetric modes due to

the coupling between two dielectric resonators. �r ¼ 29.2, h ¼ 2.65 mm, and

D ¼ 6 mm. The resonant frequency of the single dielectric resonator is f0 �
9.7 GHz.

FIG. 8. Top: The surface current J2 of the cylindrical cavity’s TE011

mode. Bottom: The electric field E1 of the dielectric resonator’s TE01d

mode. Cavity Dimension: Height ¼ Diameter ¼ 4.1 cm, fTE011 ¼ 9.7 GHz.

Dielectric Dimension: Height ¼ 2.65 mm, Diameter ¼ 6 mm. fTE01d ¼
9.7 GHz. �r ¼ 29.2.
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the polarization vector and the electric field enables us to

accurately calculate the frequency values.

VI. CONCLUSION

Using ECMT, general expressions of the coupling coef-

ficient j between tuned coupled resonators are derived.

When the complex Poynting theorem is used, the physical

origin of j becomes clear. It is shown that juv ¼ j�vu for arbi-

trary tuned coupled resonators. Moreover, j depends on the

interaction of one resonator with the other’s equivalent sour-

ces (P; J and n̂ �Hj@V). The general expressions of j reduce

to well-known formulas which were derived for certain types

of resonators. j and/or the coupled frequencies were calcu-

lated for different configurations used in magnetic resonance

spectroscopy and metamaterials (loop-gaps, bridged loop-

gaps, double split rings, dielectric resonators, and cavities

containing dielectric resonators). It was shown that when the

equivalent sources of one resonator are orthogonal to fields

of the other, the two resonators do not interact. This is true

even if the resonators are in a very close proximity to one

another. The expressions derived here are valid for different

resonators which can be arbitrarily oriented in space. Thus, it

can aid in the analysis of the of wireless power transfer sys-

tems, EPR probes, metamaterial media, and magneto-

inductive waves and devices.

It is essential to compare the current approach with other

approaches reported in the literature to illustrate the useful-

ness of the current methodology. Expressions (20) and (22)

were directly derived from (17) which in turn was obtained

from Maxwell’s equations under the assumption that the

modes are hybridized. As mentioned above, the coupling

coefficient j¼ jM � jE is reduced to the interaction energies

of the equivalent sources (P; J and n̂ �Hj@V). Thus, there is

no need to determine the magnitude and polarity of the mu-

tual inductance and/or capacitance. The current approach

treats dielectric and conducting resonators on the same foot-

ing. The physical origin of the modes decoupling phenom-

enon (whenever jM¼jE) follows directly from the proposed

physical explanation of j. Other approaches, whether based

on the solution of the Lagrangian equation of motion or

lumped circuit models, have been successfully applied to

particular configurations involving split ring resona-

tors.5,12,21,23,37 The counter effect of jM and jE was attrib-

uted to the opposite contributions of the electric-electric and

magnetic-magnetic dipoles.12,24 However, generalization to

cover situations where dielectric and dielectric/conducting

resonators is not straightforward.
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APPENDIX: FRICTIONLESS MASS-SPRING SYSTEM

The energy conversation of a frictionless, mass-spring

system driven by a sinusoidal force, FD ¼ F0 sin xt, shown

in Fig. 10, is studied in detail. For the mass-spring system

one can write the governing equation as

d2x

dt2
þ x2

0x ¼ FD

m
¼ F0

m
sin xt; (A1)

where x is the elongation of the spring, m is the mass, F0 is

the amplitude of the driving force, and x0 is the natural fre-

quency which is equal to
ffiffiffi
k
m

q
, where k is the spring constant.

FIG. 9. Top: The electric field E2 of the cylindrical cavity’s TE011 mode.

Bottom: The electric field E1 of the dielectric resonator’s TE01d mode.

Cavity Dimension: Height ¼ Diameter ¼ 4.1 cm, fTE011 ¼ 9.7 GHz.

Dielectric Dimension: Height ¼ 2.65 mm, Diameter ¼ 6 mm. fTE01d ¼
9.7 GHz. �r ¼ 29.2.

TABLE I. The frequency of the symmetric and anti-symmetric modes which

result from the coupling of the dielectric resonator TE01d and the cylindrical

cavity TE011 modes. The dielectric diameter and height are denoted by D

and h, respectively. The dimensions of the dielectric resonator and the cavity

were chosen such that the TE011 and TE01d modes have the same frequency.

Frequency (GHz)

�r D (mm) h (mm)
Symmetric Anti-symmetric

ECMT HFSS ECMT HFSS

29.2 6 2.65 9.201 9.209 10.374 10.417

261 1.75 1.75 9.476 9.482 9.679 9.735
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Taking x ¼ 0 when t ¼ 0 as the reference point, the

forced response of (A1) is

x tð Þ ¼ F0

m x2
0 � x2

� � sin xt: (A2)

The work-energy equation for the lossless mass-spring sys-

tem can be written as

ðð2Þ
ð1Þ

FDdx ¼ ðKE2 þ PE2Þ � ðKE1 þ PE1Þ: (A3)

The right hand side of (A3) is the difference in total energy

KE þ PE between point (2) and point (1), while the left hand

side is the work done by the driving source. Taking point (2)

to be the point where PE ¼ 0, t ¼ T
4
; dx

dt ¼ 0
� �

, and point (1)

to be the point where KE ¼ 0, (t ¼ 0, x ¼ 0), one can re-

write the work-energy equation (A3) as

ðx t¼T=4ð Þ

x t¼0ð Þ
FDdx ¼ max PEð Þ �max KEð Þ ¼ F2

0

2m x2
0 � x2

� � :
(A4)

The work term
Ð xðt¼T=4Þ

xðt¼0Þ FDdx is reactive. This means

that the energy supplied by the source for quarter of a cycle

returns back to it in the next quarter cycle. Indeed this can be

understood by examining the instantaneous power

p tð Þ ¼ FD
dx

dt
¼ F2

0x

2m x2
0 � x2

� � sin 2xt: (A5)

The instantaneous power is continuously changing from pos-

itive to negative. The sequence of events and how energy is

transferred between the driving source and the mass-spring

system is shown in Fig. 11. For the first quarter of a cycle, t
2 [0, T/4], the maximum kinetic energy together with the

work exerted by the source is converted to the maximum

potential energy at the end of the period. Then the potential

energy will release its energy in two forms: kinetic energy to

the mass and work back to the source. So, at t ¼ T/2 all the

work supplied by the source will return back to it. Then once

the mass passes the equilibrium point (x ¼ 0), where its ki-

netic energy is maximum, the source will supply the mass

with energy so when the spring is fully stretched at t ¼ 3T/4,

the potential energy will return to its maximum value. This

process repeats indefinitely.
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