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Coupled Mode Theory Applied to Resonators
in the Presence of Conductors

Sameh Y. Elnaggar, Richard J. Tervo, and Saba M. Mattar

Abstract—Using the method of images, Energy Coupled Mode
Theory (ECMT), a coupled mode equation in the frequency do-
main, is extended to deal with important cases where resonators
are in close proximity to conducting surfaces. Depending on the
type of conductors and the orientation of the resonators, the
method of images determines the relative phases of the images.
Using the formed images, the coupled frequencies and fields can
be determined by applying ECMT. Two cases are studied. In
the first case, it is shown that a dielectric resonator inserted in
a cavity couples with both the mirror image and the cavity. The
frequency behavior is described by the interaction with the image
which counteracts that with the cavity. The second case is that of
resonators sandwiched between conducting plates. It is shown that
an infinite array of stacked images is formed. The coupling of the
resonator with its images determines the coupled frequencies and
fields. In this context, the main advantage of ECMT is its ability
to separate the effects of the walls from the uncoupled system.
This means that the system parameters are independent of the
separation distances and/or the type of conductors, which renders
the post processing analyses easier and predictable. Provided that
the behaviors of the uncoupled resonators are known, ECMT is
general and can be applied to more complex systems.
Index Terms—Coupled mode theory, coupled resonators, dielec-

tric resonators, hybridization, metamaterials, perfect magnetic
conductors (PMCs), split ring resonators.

I. INTRODUCTION

P RACTICAL situations arise where resonators are installed
in the proximity of conducting surfaces. For example, it

was already shown that conducting plates affect the efficiency of
power transfer via inductive-resonance coupling [1], [2]. Meta-
materials can be realized by inserting split ring or dielectric res-
onators inside a waveguide operating below cutoff [3], [4]. Di-
electric and loop gap resonators, used as probes in electron spin
resonance spectroscopy, are usually housed in a shield or in a
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cavity [5]–[9]. In all of these situations, the frequencies and
fields of the resonators are affected by the presence of nearby
conductors.
Taking the influence of the conducting walls on the resonators

was done by ab initio approaches. For example, this was done
through out the derivation of the eigenmodes of two stacked
dielectric resonators [10]–[12] which was based on the Cohn
model [13]. For other resonators, such as loop gaps and split
rings, analytical models are unavailable or are very complex,
and one usually resorts to numerical techniques. The effect of
the walls of a waveguide on a split-ring resonator was numer-
ically and experimentally investigated using the coupling be-
tween the resonator and its mirror images. It was noted that a
split-ring resonator trapped inside a waveguide couples with an
infinite array of images [14].
To find the modes of an arbitrary number of coupled res-

onators, a coupled mode theory in the form of an eigenvalue
problem was derived. The solution of the eigenvalue problem
determines the coupled frequencies and fields [15]. Using the
coupledmode equations, the eigenmodes of an electron spin res-
onance probe, which consists of a dielectric resonator inserted
in a cavity center were found [7]. Other field-dependent param-
eters, such as the quality factor, the filling factor, and the res-
onator efficiency, were calculated [8], [9]. The same approach
was generalized to explain the behavior of double split-ring
resonators. The approach was considered to be a hybridization
scheme which is the electromagnetic analog of molecular or-
bital theory. The determined modes are proven to obey the en-
ergy conservation principle and hence the eigenvalue equation
was called energy coupled mode theory (ECMT) [15].
The fields of the coupled system, obtained by ECMT, are the

linear superposition of those of the uncoupled modes. There-
fore, an implicit assumption is that the tangential components of
the electric (magnetic) fields of the uncoupled fields are negli-
gibly small near perfect electric conductors (PMCs). Otherwise,
the coupled modes severely violate the boundary conditions. In
this paper, the method of images is combined with ECMT to
extend its domain to cover situations where resonators are in
the proximity of conducting surfaces. Hereafter, the method is
named ECMT-I. To show the validity of the method, two cases
are theoretically and numerically studied. The first is that of a
dielectric resonator interacting with an enclosing cavity. In pre-
vious work, the interaction between the dielectric resonator and
the cavity was studied where the dielectric resonator was in-
stalled in the cavity center and hence its field values are small
near the walls [7], [8]. In the current work, the effect of the
walls on the coupled frequencies is taken into account. The
second case discusses resonators sandwiched between parallel
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plate conductors. This broad class of problems covers the pres-
ence of resonators inside waveguides which can find applica-
tions in filters and metamaterial based devices. It also proposes
an analytical apparatus to study the behavior of coupled res-
onators, such as inductively coupled resonant coils, in the pres-
ence of conductors [1], [2].
This paper is organized as follows. Section II discusses the

method of images, the concept of the image resonator and
its integration with the coupled system. Expressions for the
frequency shifts for dielectric and split-ring resonators near a
conducting plane are derived. Similarly, the case of resonators
sandwiched between two conducting plates is discussed. In
Section III, two configurations are numerically solved and com-
pared with finite element simulations and other independent
analytical models. Using ECMT-I, the numerical results are
explained based on the uncoupled parameters (frequencies and
fields) which render the analysis simpler and more intuitive.
Finally, the conclusions follow in Section IV.

II. THEORY
When losses are negligibly small, the frequency and fields

distributions of the modes of a resonator can be obtained by
solving the eigenvalue problem

(1)

over the domain boundary , subject to the suitable boundary
conditions. Here, is the electric field, is the relative per-
mittivity, is the relative permeability, and is the
resonant angular frequency. The boundary can be divided into
three main types: 1) perfect electric conductor (PEC), where the
tangential component vanishes; 2) PMC, where the tangen-
tial component vanishes; and 3) infinity (radiation), where the
magnitude of the fields are zero ( whenever ).
Consider the structure shown in Fig. 1(a), which represents a

resonator in the proximity of a conducting plane (either PEC or
PMC). If the upper half space is only considered, Fig. 1(b) rep-
resents an equivalent problem. Both boundary value problems
give the same results in the upper half space. This equivalency
is used in full-wave solvers to reduce the problem space. In this
case, the original system is the one in Fig. 1(b), and the introduc-
tion of the suitable boundary (symmetry plane) cuts the space in
half and hence reduces the computational time.
ECMT is also in an eigenvalue problem form. However, un-

like (1), the operator relies on the fields of the interacting res-
onators and hence the problem space is limited to the number of
resonators. Thus, one can start from the configuration given in
Fig. 1(b) to determine the mode of interest of the structure de-
picted in Fig. 1(a). In general, the two modes of the resonators
in Fig. 1(b) interact, resulting in a symmetric and an anti-sym-
metric modes. Depending on the conductor type (PEC or PMC),
each mode will represent a solution to the system in Fig. 1(a).
Once the modes of a resonator/conducting plane system are de-
termined, ECMT can be reapplied to study their interactions
with other nearby resonators. It is crucial to note that the so-
lution of the structure in Fig. 1(a) is a subset of the one shown
in Fig. 1(b). The right solution is singled out by the theory of
images.

Fig. 1. Typical structure of a dielectric resonator interacting with a conducting
plane. (a) Original system. (b) Equivalent structure where the plane is replaced
by an equivalent image resonator.

The orientation of the resonator with respect to the con-
ducting plane is crucial in determining the right coupled mode
behavior. For example, consider a cylindrical dielectric res-
onator close to a PEC as shown in Fig. 1(a). The dielectric
resonator's mode behaves like a magnetic dipole where
its direction is shown in Fig. 1 [13]. According to the image
theory, the real and image resonators have anti-parallel dipole
moments, which are both normal to the conducting plane [16].
Therefore, the electric fields of both resonators are 180 out of
phase which guarantees that the tangential component of the
electric field vanishes on the mid plane. Using coupled mode
theory, the coupling coefficient is found to be proportional to

, where the integration is carried over one of
the dielectric resonators volume [24]. Since and
are anti-parallel, is negative. The frequency of the symmetric
mode is [7]

(2)

where is the frequency of the dielectric resonator in free space
(hereafter called the uncoupled frequency) and is the cou-
pling coefficient at double the distance between the resonator
and the conducting plane. Thus, the effect of the PEC is to in-
crease the frequency of the mode.
On the other hand, if a split-ring resonator is brought close

to a PEC wall, as shown in Fig. 2, image theory dictates that
the magnetic dipole moments of the resonator and its image are
parallel to each other and to the conducting plane as shown in
Fig. 2 [16]. Again, the frequency of the symmetric mode is given
by (2). Now is proportional to
[24]. Because the magnetic moments are parallel, the first term
is positive. Moreover, to preserve the parallelism of the mag-
netic dipoles, the electric fields, concentrated in the vicinity of
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Fig. 2. Split-ring resonator is coupled to its image in the symmetric mode.

the gaps are anti-parallel (i.e, ) and hence is
positive. Thus, the resulting mode has a frequency which
is lower than the uncoupled frequency . This interpretation,
based on coupled mode theory, explains why the frequency de-
creases when the gap of the split-ring gets close to the wave-
guide wall. Zhang et al. attributed this to the increase in gap
capacitance [14].
As already mentioned, resonators sandwiched between two

parallel plates are not uncommon. For example, metamaterials
can be realized inside a waveguide by inserting dielectric or split
ring resonators. Each resonator forms a unit cell which inter-
acts with its neighbors and with the mirror images. The cylin-
drical cavity resonance technique, a method used to measure the
dielectric properties of a material, is another example [17]. In
this method, the dielectric sample is placed inside a cylindrical
cavity which has a diameter at least double that of the sample.
The unloaded , the central frequency, the 3-dB bandwidth,
and the transmission coefficient are used to determine the
sample's loss tangent . For samples which have relatively
low permittivity values, the walls of the cylindrical cavity can
have a significant effect. Moreover, the cavity modes can in-
teract with the dielectric mode [7], [8]. The efficiency of
wireless power transfer via strong inductively-coupled resonant
coils can also be affected by metallic planes [1], [2]. To under-
stand the behavior of such complex systems, it is imperative to
model the simplest cases: one and two resonator(s) installed be-
tween two parallel plates.
For the case of a resonator sandwiched between two con-

ducting planes, as shown in Fig. 3, the equivalent coupled mode
structure is an array of infinite number of images [14]. Ignoring
the coupling induced frequency shift terms, the eigenvalue
problem of the coupled system can be written as [15]

...
...

. . .
...

...
...

...
...

...
...

...
. . .

(3)

where is the angular frequency of the uncoupled resonator,
is the coupling coefficient between the th and th res-

onators, is the expansion coefficient of the resonator, and
is the frequency of the coupled system. can be calculated

Fig. 3. One resonator between two conducting planes. An equivalent system:
instead of the conducting planes, an infinite chain of image resonators can be
placed all separated by 2s.

using the overlap integrals [7], [24] or the frequency splitting
formula , where
and are the angular frequencies of the symmetric and
anti-symmetric modes, respectively. As will be shown, both
methods were used in the current article. It is worth noticing
that, although (3) has infinite number of eigenvectors, only one
of them satisfies the boundary conditions at the position of the
conducting plane. Because the relative phases of the images
are taken into account in constructing the matrix in (3), this
eigenvector is always the first one, where its components have
the same sign.
Fortunately, the coupling coefficient decreases sharply as the

distance between the resonators increases. Therefore, the cou-
pling coefficient between adjacent neighbors is considered only.
Consequently, (3) simplifies to

...
...

. . .
...

...
...

...
...

...
...

...
. . .

(4)

In (4), the subscripts of were dropped since all cou-
pling coefficients between nearest neighbors are equal. Since
the matrix is symmetric and tri-diagonal, the first eigenvalue
approaches [18]

(5)

The corresponding eigenvector is [18]

(6)

is the image order which, as shown in Fig. 4, is zero for the
original resonator. Image pairs are labelled according to their
position from the original resonator. is the number of image
pairs which tends to infinity when all pairs (orders) are taken
into account. In (6), the eigenvectors are normalized such that
the coefficient of the original resonator (Zeroth order) is set
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Fig. 4. Resonator sandwiched between two conducting planes. For PEC walls,
the phases of the images are alternating. For the PMC walls, all the images have
the same phase of the original resonator. The left hand side shows the magnitude
of the coefficients compared to which is normalized to unity.

to 1. It is worth noticing that the lower the image order (closer
to the real resonator), the more its contribution to the system
behavior (higher value).
In this paper, the following notation is used to represent res-

onators sandwiched between conducting planes: the resonator
is represented by “ ” and PEC wall as “ ”. Because of their
resemblance to high-impedance surfaces [19], “ ” or “ ” are
used to represent a PMC wall. For example, a resonator sand-
wiched between two PMC walls is denoted by “ ”.
Two resonators sandwiched between two PEC walls are repre-
sented by “ ”.
For a resonator sandwiched between two PEC walls (

), the magnetic dipole moment of any two consecutive res-
onators and are anti-parallel, i.e., . This guarantees
that the electric field vanishes on the walls. On the contrary, all
moments are parallel for .
The total electric field is the vector sum of the fields,

of all orders. Thus

(7)

where

(8)

for and

(9)

for . is distance between the two planes.

III. RESULTS AND DISCUSSION

A. Dielectric-Cavity Interaction

The coupling between a dielectric resonator and a cavity was
previously studied [7], [20]. It was shown that inserting a dielec-
tric resonator in a cavity improves the signal to noise ratio of an

Fig. 5. (a) Dielectric resonator allowed to move along its common axis with
the cavity. The holder is of low loss and low permittivity material. It is therefore
not shown. Conceptual view of the hybridization between the modes: (b) when
the image is not taken into account and (c) when the image is taken into account.

electron spin resonance probe [9]. Adding another dielectric res-
onator, linearly changes the frequency of the desired mode as a
function of the separation distance between the two dielectric
resonators. This nice linear response was used to tune the fre-
quency over a wide range. However once they are close to the
cavity walls, the benefit of using the dielectric resonators is lost
and thus putting a limitation on the maximum separation dis-
tance and consequently the frequency spanning range. [21]. The
apparent loss of the dielectric effect on the probe performance
was explained by using boundary conditions arguments where
the fields diminish due to the simultaneous presence of perfect
electric and perfect magnetic walls. In the analysis that was car-
ried out in [7]–[9], only one dielectric resonator was used and it
was installed at the cavity center. Hence, it was far away from
the cavity walls and its interaction with the images was negli-
gibly small. Therefore it was justifiable to calculate the coupling
coefficient between the dielectric and the cavity using the dielec-
tric and the cavity modes only [2]. The twomodes
couple to give two modes: symmetric and anti-symmetric. How-
ever, if the dielectric was brought close to one of the walls, as
shown in Fig. 5, the coupling with the image becomes signifi-
cant and cannot be ignored.
Here, ECMT-I will be used to calculate the effect of the

cavity walls on the resonant frequencies of the symmetric
and anti-symmetric modes. A dielectric resonator ( ,
diameter 6 mm, height 2.65 mm) is inserted into a
cylindrical cavity hiameter height 4.1 cm . These di-
mensions guarantee that the resonant frequencies of the
and modes are equal (9.7 GHz). For different distances
, the frequencies of both the symmetric and the anti-sym-
metric modes are calculated using ECMT [15] and ECMT-I
and compared with HFSS (Ansys Corporation, Pittsburgh, PA,
USA) eigenmodes simulations. Fig. 5(b) and (c) presents a
conceptual view of the hybridization of the cavity and
the dielectric mode. In Fig. 5(b), when the effect of the image is
neglected, the mode couples with the dielectric
mode. As a result, two coupled modes, the symmetric and
anti-symmetric, arise. Fig. 5(c) shows a two stage hybridization
scheme. Here the dielectric mode couples with its own
image, which is 180 out of phase. Consequently, the resulting
mode, the , then couples with the cavity mode
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Fig. 6. Coupled frequencies calculated using ECMT, ECMT-I, and HFSS.
(a) Anti-symmetric mode. (b) Symmetric mode. In (a), the insets depicts
descriptive scenarios of the position of the dielectric resonator in the cavity.

yielding two coupled modes: symmetric and antisymmetric.
The coupling between the cavity on one hand and the dielectric
or the dielectric-image pair on the other is determined as in
[7] using the overlap integrals of the electric fields inside the
dielectric material. Here, the fields expressions of the
mode are obtained using the Cohn model which, as shown in
[7], provides accurate field values inside the dielectric material.
Because diffraction is not taken into account, the accuracy of
the electric field is lost outside the dielectric material where
the fields are evanescent [23]. Thus the Cohn model does not
provide the accuracy needed to compute the frequency of the
dielectric-image pair which, unlike the coupling between the
dielectric resonator and cavity, strongly relies on the evanescent
fields. Hence, HFSS eigenmode solver is used to determine
the frequency of the dielectric-image pair. This value is then
plugged into the ECMT eigenvalue problem together with the
electric field expression of the dielectric-image pair which is
given by , where
is the electric field of the mode.
Fig. 6 shows how the frequencies change as a function of .

As the figure presents, incorporating the method of images gives
more accurate results particularly for the anti-symmetric mode.
This can be explained by noting that in order to calculate the fre-
quencies, ECMT uses the mode, while ECMT-I uses the

mode which, by referring to (2) and noting that ,

has a higher frequency value. When the dielectric is close to
the wall, the electric field of the cavity's mode is small

[8]. The coupling coefficient is the overlap
of the electric fields of the cavity and the dielectric resonator and
hence is small close to the wall. This means that the modes tend
to decouple. The symmetric mode tends to the cavity
mode [6] and the anti-symmetric mode approaches the dielec-
tric mode (ECMT used) or mode (ECMT-I used).
When the dielectric resonator is very close to the wall, the fre-
quency of the can be significantly higher than that of the

. This explains why ECMT completely fails to explain
the behavior of the anti-symmetric mode depicted in Fig. 6(b).
Similarly, the minimum of the anti-symmetric mode in

Fig. 6(b) can be explained by noting that it is the result of two
opposing actions: 1) the decrease in the frequency due to the
coupling with the cavity and 2) the increase in frequency due
to the coupling with the image. It is expected that the dielectric

mode couples with other cavity modes. However, the
contribution of their quantitative effect is very small [7]. It is
also expected that the discrepancy between HFSS and ECMT-I
results will decrease if a more sophisticated model for the
dielectric mode was used.

B. Resonator Between Two Parallel Plates
Because an analytical model, based on the Cohn model, is al-

ready available, a dielectric resonator is considered. Regardless
of the limitations of the Cohn model, it provides deep insight
into the coupling mechanism and allows the finding of closed
form expressions. However, the general analysis and findings
are valid for any type of resonators. The coupled (coupling with
the images) frequencies and fields are calculated and compared
to the values obtained using the analytical model. As mentioned
in Section II, the resonator symmetrically couples with the stack
of infinite images. The coupled, denoted by , has a fre-
quency of

for
for

(10)
where is the separation distance between the conducting
planes. The frequency given by (10) is calculated for different
separations. The results are then compared with the values
obtained using the analytical model [11]. For the sake of
completeness, the analytical models of both and

are presented in the Appendix. The frequency
values are plotted in Fig. 7 for a dielectric resonator ( ,
diameter 6 mm, height 2.65 mm) inserted between two
plates which are separated by a distance 3.15–8.65 mm.
Although (10) is much simpler than the transcendental equa-

tions (18) and (19) (see the Appendix), ECMT-I gives very ac-
curate values when 4 mm (refer to Fig. 7). Unlike the an-
alytical model, ECMT-I separates the effects of the walls from
the resonator's uncoupled frequency . The contribution of
the walls is lumped in . For 4 mm, the discrepancy be-
tween the two methods can be attributed to: 1) the frequency ex-
pression (2) was determined based on the nearest neighbor inter-
actions only and 2) when the resonators are close, coupling-in-
duced frequency shifts are not negligible. Coupling-induced fre-
quency shifts change the on-diagonal terms and hence shift the
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Fig. 7. Frequency of the resonant mode for a dielectric resonator sandwiched
between two conducting planes. (a) PEC. (b) PMC.

frequencies [15], [22]. This shift in frequency can be attributed
to the proximity effects of the other resonators. The presence of
other resonators has the effect of changing the equivalent self
capacitance and inductance and thus changing the on-diagonal
terms. This behavior is different from the coupling behavior
which introduces mutual capacitances and/or inductances.
In the following, expressions for the coupled electric field

will be derived and compared with the field expression (22). The
electric field of the mode, centered at the origin, can be
written as [23]

(11)

is in the azimuthal direction . is the dielectric height,
is the radial wave number, is the axial free space attenuation
factor and is the propagation constant inside the dielectric.
Using ECMT-I, the total electric field can be determined by
(7) and (8) or (9). Equation (7) separates the fields of the un-
coupled resonator from the contributions of the conductors

. For the dielectric resonator, the field of the th pair,
, is found to be

(12)

for and

(13)
for . Expressions (6), (12) and (13) are substituted
back into (7), and the field correction sim-
plifies to

(14)

Fig. 8. Dielectric resonator sandwiched between two PEC plates: The normal-
ized electric field calculated over . The distance between the two
plates is (a) 3.15 mm and (b) 8.65 mm.

for and

(15)
for .
Expressions (14) and (15) are calculated over and

compared with the analytical model [cf. (22)–(26)]. The results
are plotted in Figs. 8 and 9. It is apparent that ECMT-I gives very
accurate values of . Other than this, ECMT-I separates the
conductors' effects, from the uncoupled field, . Moreover,
the parameters and depend on the uncoupled resonance
frequency and is independent of the separation distance . This
means that explicitly depends on the uncoupled parameters.
Its dependency on is lumped in the factors between brackets in
(14) and (15). Separating the different effects and contributions,
renders the analysis simpler [compare with (22)–(26)].
When is very small , the field of the

deviates significantly from that of the mode. Based on
ECMT-I this can be explained by noticing that the smaller the
spacing between the conductors, the larger the effect of the
mirror images. From Figs. 8 and 9, it is clear that for
3.15 mm the PMC walls have a more profound effect. This is
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Fig. 9. Dielectric resonator sandwiched between two PMC plates: The normal-
ized electric field calculated over . The distance between the two
plates is (a) 3.15 mm and (b) 8.65 mm.

due to the fact that, for PMC walls, all the images' modes are
in phase with the uncoupled mode (Zeroth order). Thus, the ef-
fect of is to enhance . On the contrary, the presence of
the PEC walls, as shown in Fig. 4, alternates the phase between
consecutive resonators, which makes the effect of the walls less
profound. Quantitatively, the effect of the walls appears in the
terms inside the brackets of (14) and (15). For this term
approaches 1/2, for small values. On the other hand, the term
gets substantially large (approaches ) when PMC walls
are present.
The last system examined here is that of two dielectric res-

onators sandwiched between two PEC walls
and is shown in Fig. 10. In general, the two resonators' modes
couple which result in symmetric and anti-symmetric modes.
Because the two resonators are independent, the phase relation
between the two real resonators modes [denoted by 1 and 2 in
Fig. 10(a)]can be arbitrarily chosen. In the following analysis,
the two modes were chosen to be in phase. As in the case of
one resonator sandwiched between two conducting plates, the
number of images is infinite. Due to the presence of two res-
onators, the 1st image order consists of four resonators. The
phase relations of the images are dependent on the walls type.
The arrows in Fig. 10(b) show the relative phase when PEC

Fig. 10. (a) Two dielectric resonators separated by a distance of mm apart.
Both resonators are away from PEC walls. (b) Equivalent coupled resonators
images. (c) Phase shift of the symmetric and the anti-symmetric modes.

Fig. 11. Frequency of when 3 mm. (a) Symmetric mode.
(b) Anti-symmetric mode.

walls are used. Unlike the approximation used to determine the
modes of , the full eigenvalue problem [15] is solved
up to the 1st order images only. This is a 6 6 system resulting
in six eigenvectors. However, due to the presence of two in-
dependent resonators, only two eigenvectors correspond to the
physical system depicted in Fig. 10(a). Dictated by the method
of images, the sign of the coefficients of the image resonators
always follow the real ones. (By referring to Fig. 10(b), the sign
of the coefficients of 1 and 1 follow that of 1. Similarly, the
sign of the coefficients of 2 and 2 follow that of 2). Thus,
one ends up with two eigenvectors which have the sign relations
shown in Fig. 10(c). In Fig. 3, , the distance between the res-
onators and the PEC walls, is fixed to 3 mm and , the distance
between the two resonators, changes from 1 to 6 mm. Shown
in Fig. 11 is the frequency of both the symmetric and anti-sym-
metric modes. The frequency is calculated using ECMT-I and
the analytical model obtained in [10]. Because the full eigen-
value problem in [15] is solved, the coupling between all six
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resonators and the coupling-induced frequency shifts terms are
automatically taken into account. Although the first-order res-
onators are only used, ECMT-I can accurately calculate the fre-
quencies of both coupled modes. This is true even when is
small. This suggests that taking into account the coupling-in-
duced frequency shift terms and the coupling with relatively far
resonators improve the results.
It is worth noticing that provided that the fields and fre-

quencies of the uncoupled resonators are known or estimated,
ECMT-I can be applied to more complex systems where an
analytical model is not possible or very complex. For example
instead of using dielectric resonators, split-rings, loop gaps or
capacitively loaded coils can be used.

IV. CONCLUSION

Using the method of images, the domain of ECMT was ex-
tended to cover cases where resonators are in the proximity of
conductors. Because ECMT is in the form of an eigenvalue
problem in the frequency domain, the extension can be easily
achieved. It was shown that the type of conductors (PEC or
PMC) and the orientation of the resonators with respect to them
determine the phase of the images and consequently the sign
of the coupling coefficient . This in turn determines whether
the resonant frequency is increased or decreased. To verify the
validity of the new approach, two cases were theoretically and
numerically analyzed.

APPENDIX

For the and structures, the modes can
be determined after solving the auxiliary Helmholtz's equation

(16)

where , is the speed of light. One is interested in the
azimuthal independent symmetric solution of (16). The general
solution is

(17)

where , is the dielectric radius,
, and .

For like modes, , ,
and . The continuity of the fields
across the boundaries can be written as

(18)

for and

(19)

for . The resonant frequency is determined from (18)
and (19) by solving the following transcendental equations:

(20)

for and

(21)

for .
The electric field is found to be

(22)

For

(23)

and

(24)

For

(25)

and

(26)
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