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Abstract—Coupled resonators appear as the building blocks
of many systems and devices. Recently, Energy Coupled Mode
Theory (ECMT), a general coupled mode formalism in an eigen-
value problem form, was introduced to estimate the frequencies
and fields of an arbitrary number of coupled resonators. In the
current article, impressed sources are introduced to generalize
ECMT to cover cases where arbitrary input excitations are
applied. The system is represented by a matrix transfer function
in the complex domain. To demonstrate how the transfer function
can be applied, the efficiency of a classical system of two
inductively coupled resonators is calculated under different load
values and input frequencies.

I. INTRODUCTION

Coupled resonators (CRs) arise as the building blocks of

different devices and systems. For example they are the unit

cells in resonant type metamaterials, magneto-inductive waves

[1] and wireless power transfer systems [2].

Usually, CRs are analyzed using either circuit models or

coupled mode theory [2], [3]. In both approaches the coupling

coefficient κ and other on diagonal terms are known a priori,

where they are calculated using energy considerations. Energy

Coupled Mode Theory (ECMT), an eigenvalue problem, was

introduced to estimate the coupled frequencies and fields.

It can be considered the EM analog of Molecular Orbital

Theory [4]. ECMT was used to determine the coupled modes

in Electron Spin Resonance Probes [5] and the behaviour of

resonators in the presence of conducting planes [6]. Moreover,

it was used to derive general expressions of κ [7].

In the current article, a set of second order coupled differen-

tial equations in the modes amplitudes is derived to determine

the response of an arbitrary number of resonators to arbitrary

inputs. The set of equations reduces to the ECMT eigenvalue

problem form in the absence of input excitations. To illustrate

how the derived equations can be used, the transfer efficiency

of a classical two inductively coupled resonant coils is calcu-

lated for different load values and input frequencies.

II. ANALYSIS

The E and H fields of CRs are expanded in terms of the

uncoupled ones (Ek and Hk). Here, the expansion coefficients

ak (t) and bk (t) are time dependent to take into account the

effect of the impressed source (Jimp) which excites the system.

Accordingly,

E =

N
∑

k=1

ak (t)Ek and H =

N
∑

k=1

bk (t)Hk, (1)

where N is the number of interacting modes. As was carried

out in [4], the coupled mode equations can be determined by

expanding ∇· (E∗

k
×H) and ∇· (E ×H

∗

k
), using Maxwell’s

equations and (1). The time dependency of ak (t) and bk (t),
and the presence of Jimp generalize the coupled equations to

Aȧ + (M+ F − iΩB) b = J (2)

and
Gḃ+

(

M† − iΩD
)

a = 0, (3)

where A, M, F , Ω, B, G and D are the overlap integrals

and are defined in [4]. J is an N × 1 column vector which

includes the forcing terms due to the interaction of the modes

with Jimp. Its kth row is given by

Jk = −

∫

V

Jimp ·E
∗
k dv. (4)

Eqs. (2) and (3) are coupled differential equations in the fields

amplitudes. They are the generalized coupled mode equations

which in the absence of Jimp reduces to the ones obtained in

[4]. A magnetic source can be easily included, where its effect

appears as a forcing term in the R.H.S of (3). Taking the time

derivative of (2) and substituting for ḃ from (3), one finds

ä−A−1 (M+ F − iΩB) G−1
(

M† − iΩD
)

a = A−1J̇ . (5)

For small radiation losses and thin conductors, (5) reduces to

ä+Ka = A−1J̇ , (6)

where K = A−1D†ΩG−1ΩD [4]. Losses are taken into account

by replacing ωk in Ω by ωk + i|σk|, where −|σk| is the decay

rate of the kth mode.

It is worth noting that unlike most of coupled mode for-

malisms, κ and on-diagonal terms are determined directly from

Eq. (6) [2], [4]. Moreover, the effect of nearby conducting

planes (PEC or PMC) can be taken into account by considering

the coupling with the induced image resonators [6].

Taking the Laplace transform of (6), the response can be

expressed in the s−domain as

L{a} = Φ (s) [sȧ (0) + a (0)] + sΦ (s)L{J }, (7)

where Φ (s) ≡
(

s2I +K
)−1

is the N × N matrix transfer

function. When the system is excited by sinusoidal inputs of

frequency ω, the steady state response is determined by the

last term in the R.H.S of (7) as
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Fig. 1. The Reflection Coefficient of a capacitively loaded coil having a
resonance frequency f0 ≈ 7.79 MHz. Inset (a) A single coil. Inset (b):
Magnetic field of the CRs at resonance. Dimensions: D1= 62 cm, t1= 2 cm,
D2= 13.26 cm, dielectric disc thickness, t2= 2 mm, d= 80 cm and dielectric
constant= 10. tan δ of dielectric was set to 1/8000 (scenario 1) and 1/80
(scenario 2).

ã (ω) = iωΦ (ω)L{J }|s=iω, (8)

where s was replaced by iω. For many practical cases, the

system performance can be evaluated without the need of

the exact J terms values. The following example illustrates

how (8) can be used to evaluate the transfer efficiency of two

inductively CRs.

A. Resonant Inductively Coupled Coils

To demonstrate how (8) can be applied, a system of two

capacitively loaded coils which are inductively coupled is an-

alyzed. Finite Element simulation (HFSS, Ansys Corporation,

Pittsburgh, PA, USA) is used to verify the results. The coils

have the same dimensions of those in [2]. For completeness,

the dimensions and relevant parameters are presented in the

caption of Fig. 1. The Fig. also shows the simulated reflection

coefficient S11 which indicates that the resonant frequency

f0 ≈ 7.8 MHz. Based on the dielectric disks loss tangent,

two scenarios are considered. The dielectric loss tangent is

set to 1/8000 (scenario 1) and 1/80 (scenario 2), respectively.

The two coils are positioned 80 cm apart. A sinusoidal input

is applied to the excitation port of the source coil (hereafter

denoted by the subscript 1). The transfer efficiency η can be

calculated after |ã2/ã1| is determined. This ratio depends on

the 2 × 2 transfer matrix Φ (ω). The coupling is primarily

magnetic, thus the off-diagonal terms of D and A vanish.

Moreover, Jimp is only coupled to the first resonator. The

coupling coefficient κ is the main factor and it is equal to

G12/G11 [4]. Therefore, the quantity |ã2/ã1| is obtained from

(8) as
∣

∣

∣

ã2

ã1

∣

∣

∣
=

∣

∣

∣

∣

κ (ω0 + iσ0) (ω0 + iσ0 + iσw)

(ω0 − ω + iσ0 + iσw) (ω0 + ω + iσ0 + iσw)

∣

∣

∣

∣

, (9)

where σ0 and σw are the intrinsic decay rate of the coils and

load, respectively. Once the ratio of the two amplitudes is

known, η can be found [2]

η = 100
σw|ã2/ã1|

2

(σw + σ0) |ã2/ã1|2 + σ0

. (10)

On the other hand η, as a function of σw, can be determined

from the S parameters as
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Fig. 2. The efficiency of the coupled system calculated using the Forced
ECMT equation of motion and Finite Element simulation when (a) tan δ =

1/8000 and (inset) tan δ = 1/80 and f = f0. (b) tan δ = 1/8000, f =

7.2− 8.3 MHz and σw/σ0 = 5.

η (σw) = 100
|S21|

2

1− |S11|2
. (11)

The characteristic impedance (Z01) of the feeding line was

chosen to be much smaller than the coil intrinsic resistance

R0 (Z01 = R0/100) and thus does not load the structure. σw

was controlled by changing the characteristic impedance of

the output port (Z02) such that the σw = σ0Z02/R0. Fig. 2(a)

shows η as a function of σw, where the excitation frequency

is fixed at f0. ECMT gives accurate results even when the

resonant coils are lossy (Q0 ≈ 80). On the other, Fig. 2(b)

presents the results when σw was held at σ0 and the input

excitation frequency f was swept over a 20% window. Again,

ECMT agrees with the finite element simulations as long as

|f−f0| is not very large to the extent that higher order modes,

not taken into account, are excited. In this article, we derived

a matrix transfer function in the complex plane to describe the

performance of an arbitrary number of CRs. We demonstrated

how it can be applied to calculate the efficiency of a classical

system of two inductively CRs. Nevertheless, the matrix

transfer function can be used to calculate performance metrics

of an arbitrary number of CRs in a complex environment

defined by the presence of conducting planes.
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