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Abstract An electron paramagnetic resonance (EPR) probe consisting of two

dielectric resonators (DRs) and a cavity (CV) is ideal for EPR experiments where

both signal enhancement and tuning capabilities are required. The coupling of two

DRs, resonating in their TE01d mode and a CV resonating in its TE011 mode, is

studied using energy-coupled mode theory (ECMT). The frequencies and eigen-

vectors of the three coupled modes are analytically derived. As predicted numeri-

cally, ECMT confirms that the TEþþ� and TEþ�� modes are indeed found to be

degenerate at a specific distance between the two DRs d12. Additionally, the con-

dition at which degeneracy occurs is specified. For a considerable range, the cal-

culated frequency of the TEþþþ mode changes linearly with respect to d12. The

TEþþþ mode showed a 500 MHz frequency change over a distance of 2 cm, when

the resonance frequency is around 9.7 GHz. This enables the experimentalist to

linearly tune the probe over this large frequency range. Finally the asymmetric

configuration, where one of the resonators (DR2) is kept at the cavity center and the

other one is allowed to move along the cavity axis, is studied. It is estimated that the

frequency changes by 600 MHz over a distance of 1.5 cm. A formula for the

magnitude of the magnetic field along the cavity axis, where the EPR samples are

usually placed, is developed. This is crucial in determining the magnetic field in the

vicinity of the sample and the probe’s filling factor.
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1 Introduction

Spin-labeled analogs of biologically significant molecules and free radicals are

usually large, while their paramagnetic centers, in comparison to their overall size,

are small. Thus, they are paramagnetically dilute. In addition, the sample size is

generally small and its quantity is limited. Consequently, extensive research and

effort have been spent in increasing the sensitivity of the magnetic resonance

spectrometers used to investigate these molecules. One way is to design more

sensitive probes. Accordingly, miniature loop-gap (LGR) or dielectric (DR)

resonators were introduced as probe components [1–5]. These resonators have

small sizes, high energy density and large magnetic fields (B1) in the sample

vicinity, leading to large filling factors g. LGRs and DRs are normally housed in a

shield to confine the probe’s microwave radiation.

To this end we have derived, from first principles, an energy-conserved coupled

mode theory (ECMT) to describe the properties of these probes and microwave

resonators in general [6, 7]. Therefore, the frequencies, shape of the coupled modes,

electric, and magnetic fields of probes were determined analytically and compared

with full-wave finite element simulations [8]. Additional crucial general expressions

of the probe parameters such as the quality factors, filling factors, and coupling

coefficients among the resonators have been obtained [9, 10]. It is now possible to

optimize dielectric and cavity configurations of a probe to maximize its efficiency

parameter, K. One can now use the theoretical algebraic expressions derived from

ECMT to build better probes and describe their properties at a wide frequency range.

Two stacked resonators in an electron paramagnetic resonance (EPR) probe add

the flexibility of tuning the frequency over a certain frequency range [11–16]. Based

on the Cohn model [17], doubly stacked dielectric resonators in free space and

inside a shield were analyzed and the frequencies of the modes were calculated

[18, 19]. In addition to their role as frequency tuners, the interaction of the two DRs

within a CV improves the signal-to-noise ratio (SNR) of the detected EPR signal

[13]. Experiments show that two stacked DRs, with a relative permittivity of

er � 30, inserted in a standard TE102 rectangular cavity improves the SNR

approximately 24 times compared to that of the empty cavity [13].

To better understand the interactions between two DRs in a CV, the coupling was

previously studied using numerical simulations [12]. It was found that the

interaction of the two TE01d DR modes and the CV TE102 mode results in three

coupled ones. They were designated as the TEþþþ, TEþþ� and TEþ�� modes. The

‘‘?’’and ‘‘-’’ signs refer to in-phase and out-of-phase interactions between the

original two TE01d and TE102 modes, respectively. The fields of all three modes

were numerically computed and described in detail [12]. It was observed that the

TEþ�� mode is completely dielectric in nature, where the cavity has no effect on

the coupling. Consequently it was concluded that it is hard to excite this mode via

an iris on the surface of the cavity side-wall [12]. On the other hand, the magnetic

field of the TEþþþ mode has a CV component and hence can be excited by an iris.

Additionally, the mode frequency changes linearly with respect to the distance ðd12Þ
between the two DRs. This observation can be used to design frequency-tuneable
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probes. Numerically calculated mode frequencies were found to be in excellent

agreement with measurements [12]. The computations also showed that the TEþþ�

and TEþ�� modes become degenerate at a specific distance between the DRs.

In this article, we exploit ECMT to rigorously determine the coupled modes of an

EPR probe, which consists of two stacked DRs inserted in a conducting CV. The

numerically and experimentally observed modes, frequency change, and field

distributions, are discussed in detail. Although the analysis carried out here is quite

general, a cylindrical CV resonating in its TE011 mode is used, since it enables us to

obtain closed form expressions. Based on ECMT, the dependence of resonant

frequencies on the separation distance between the DRs ðd12Þ is attributed to the

coupling terms,which have clear physical interpretations [20]. Specifically, the reason

behind the degeneracy of the two higher modes becomes apparent and is precisely

defined. Additionally, we derive a useful linearized formula for the frequency change

of the TEþþþ mode versus d12; used in EPR measurements [12, 13].

Finally, the asymmetric configuration of the two DRs in the CV is investigated.

In this configuration, one of the DRs is kept at the CV center to hold the sample,

while the other acting as a frequency tuner, is allowed to move along the cavity’s

D1h axis of highest symmetry. The frequency shifts of the TEþþþ mode are then

calculated using ECMT and verified using finite element simulations.

Section 2 presents the probe structure and applies ECMT to determine closed

form expressions for the coupled eigenmode frequencies and fields. In Sect. 3, these

expressions and full-wave finite element simulations are applied to typical structures

and scenarios. The condition at which degeneracy occurs is also derived and, more

importantly, the trend of the frequency of the TEþþþ mode as a function of the

separation distance d12; is presented. Finally, Sect. 4 summarizes the main

conclusions and implications.

2 Theoretical Analysis

The probe under consideration is depicted in Fig. 1. It consists of two cylindrical

DRs with moderately high relative permittivity (er ¼ 29:2) placed in a cylindrical

Fig. 1 Two dielectric
resonators in a cylindrical
cavity. The resonators are held
in a tube with a low-loss and
low-dielectric constant material
not shown in the figure.
H = 4.1 cm, rc = 2.05 cm,
h = 2.65 mm, and rd = 3 mm
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TE011 CV. The holder, not shown in the figure, is a tube made from a low-loss and

low-relative permittivity, such as Teflon�, and hence its effect is small [12]. The

cylindrical symmetry of this structure makes it possible to find closed form

expressions for the coupling coefficients between the two DRs and the CV [9]. The

system is similar to that previously discussed where a rectangular TE102 CV was

used instead [12]. The height and radius of the CV are 4.1 cm. Similarly, the height

and radius of the DRs are 2.65 and 3.0 mm, respectively. These dimensions

guarantee that the three components have the same resonant frequency.

A simplified eigenvalue equation of the three coupled system can be determined

after inspecting the rather simpler case of one DR (DR1) in a CV (resonator 3),

which was found to be [8]:

x2
0 �x2

0j13
�x2

0j31 x2
0

� �
a1
a3

� �
¼ x2 a1

a3

� �
;

where j13 ¼ j31 is the coupling coefficient between DR1 and CV. After the

introduction of DR2, the augmented eigenvalue equation becomes:

x2
0 �x2

0j12 �x2
0j13

�x2
0j21 x2

0 �x2
0j23

�x2
0j31 �x2

0j32 x2
0

0
@

1
A

a1

a2

a3

0
B@

1
CA ¼ x2

a1

a2

a3

0
B@

1
CA: ð1Þ

Here j12 j21ð Þ is the coupling coefficient between the two dielectric resonators

and ji3 j3ið Þ is the coupling coefficient between the ith dielectric and the cavity,

where jij ¼ jji [20].

2.1 Modes of Symmetrically Placed DRs

When the two dielectrics are symmetrically placed, j13 ¼ j23. It is convenient to

define a � j12
j13

and j � j13, therefore, one can rewrite Eq. (1) as:

x2
0

1 �aj �j
�aj 1 �j
�j �j 1

0
@

1
A

a1

a2

a3

0
B@

1
CA ¼ x2

a1

a2

a3

0
B@

1
CA:

Solving the above eigenvalue problem, the eigenvalues and the corresponding

eigenvectors for the coupled system are found to be:

x2
þþþ ¼ x2

0 1� 1

2
aj� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2j2 þ 8j2

p� �
; ð2Þ

x2
þþ� ¼ x2

0 1� 1

2
ajþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2j2 þ 8j2

p� �
; ð3Þ

x2
þ�� ¼ x2

0 1þ ajð Þ; ð4Þ
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aþþþ ¼ 3aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 8

p

�a2 þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
þ 4
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 8

p
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; 1

 !y
; ð5Þ

aþþ� ¼ �3aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 8

p

a2 þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 8

p
� 4

;
�3aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 8

p

a2 þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 8

p
� 4

; 1

 !y
; ð6Þ

and

aþ�� ¼ 1; �1; 0ð Þy: ð7Þ

2.2 TE111 Mode of Asymmetrically Placed DRs

A tuneable doubly stacked probe can be formed by placing the two DRs

asymmetrically inside the CV. In this configuration, one of the DRs (DR2, for

example) is fixed at the CV center and DR1 is placed anywhere along the CV axis

and thus acts as a frequency tuner. As was shown by numerical calculations and

direct measurements such configuration enhances the signal-to-noise ratio, while

allowing the resonant frequency to be tuned over a considerable frequency range

[12, 13]. According to the Cohn model, j12 decreases exponentially as d12 is

increased [17]. Hence when d12 is large enough, the direct interaction between the

two DRs can be ignored j12 ¼ 0ð Þ. Accordingly, the eigenvalue and eigenvector of

the TEþþþ mode become:

x2
þþþ ¼ x2

0 1� j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

q� �
; ð8Þ

and

aþþþ ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

p ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 1
p ; 1

 !y
: ð9Þ

Here j ¼ j23 is the coupling coefficient between DR2 and CV, and bj ¼ j13 is

the coupling coefficient between DR1 and CV.

3 Results and Discussion

In this section, the expressions derived in the previous section are used to explain

the behavior of the coupled modes. In Sect. 3.1, we discuss the symmetric case; the

asymmetric case is examined in Sect. 3.2

3.1 Symmetrically Placed DRs

The probe in Fig. 1 is simulated when the DRs are symmetrically placed in the CV

using the HFSS� eigenmodes solver (Ansys Corporation, Pittsburgh, PA, USA). In

this configuration d12 ¼ 2 mm; the fields’ distributions of the three coupled modes
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are depicted in Fig. 2. The magnetic field, B1, distributions in Fig. 2a and c look

similar and are delocalized. However, B1 in Fig. 2a is more homogeneous in the

vicinity of the two DRs. This is because the three uncoupled modes forming the

TEþþþ mode in Fig. 2a are all in phase; unlike the TEþþ� mode, where the CV

mode is out of phase. On the other hand, Fig. 2b clearly shows that the TEþ�� mode

is completely dielectric in nature and the cavity does not contribute to the coupling.

This agrees with the ECMT predictions given by Eqs. (4) and (7). Furthermore,

(Eq. 7) predicts that this mode is purely anti-symmetric. Since the cavity field is in

phase with the mode of one dielectric and out of phase with the other, the coupled

energy injected by the CV to one of the dielectric modes is equal to that pumped out

to the CV via the other dielectric mode, leaving zero net energy in the CV mode.

Fig. 2 Magnetic field distributions of the three coupled modes. a–c Illustrate the TEþþþ;TEþ��;TEþþ�

modes, respectively
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Such a situation is not uncommon; for example when a relay coil is inserted

between two inductively resonant coils, the relay coil transfers energy from the one

resonant coil to the other without itself storing energy. Such a phenomenon is called

electromagnetically induced transparency (EIT) [21] and was exploited to show that

electric power can be wirelessly transferred over a considerably large distance [22].

One of the most significant and desirable properties of probes consisting of two

DRs is the capability to tune the resonant frequency by controlling d12. To quantify

how the frequency depends on d12, we resort to Eqs. (2)–(4) to calculate the

frequencies of the three coupled modes. The results are compared to HFSS

simulations as presented in Fig. 3. One can see that the upper two modes

ðTEþþ� and TEþ��Þ, irrespective of the method of calculation, can be degenerate

at some particular d12. Equating (3) to (4), the condition at which the two modes are

degenerate is found to be:

a ¼ 1 or j12 ¼ j13: ð10Þ

The eigenvector for the TEþþ� mode when a ¼ 1 is:

1ffiffiffi
6

p �1 � 1 2ð Þy:

In Fig. 3, the j12 parameter was calculated using the Cohn model [17], which

becomes less accurate outside the dielectric material, particularly for relatively

moderate er. This is because it is assumed that the side walls (curved surfaces) of the

DR are perfect magnetic walls. Accordingly in Fig. 3, condition Eq. (10) is met at

d12 = 1.5 mm, which is different from the finite element simulated value

(d12 ¼ 2:2 mm). However, a more accurate j12 can be determined using the

frequency splitting formula of the two DRs when placed d12 apart in free space [23]:

j12 ¼
x2

þ� � x2
þþ

x2
þ� þ x2

þþ
: ð11Þ

The symmetric and anti-symmetric frequencies, xþþ and xþ�, are determined

from the simulation of the eigenvalues of the two DRs only. Equation (11) is then

used to estimate a more accurate value of j12 as the solid curve in Fig. 4 shows. It is
clear from this figure that j12 decreases in an exponent-like fashion, consistent with

Fig. 3 Frequency of the
coupled modes versus the
separation distance d12
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the evanescent field assumption used in the Cohn model outside of the flat (upper

and lower) DR surfaces. An analytical closed form expression for the cavity-DR1

coupling coefficient, j13, can be found based on one DR placed at the CV center [9].

Taking into account that the electric field of the CV TE011 mode is maximum at the

CV mid-plane and decreases sinusoidally toward the upper (lower) flat boundaries,

j13 for an arbitrary distance d12 is found to be:

j13 ¼ 13:16
er � 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2erkdH

p AD

AC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos kdh

bhþ sin kdh

s
cos

p
2H

d12 þ hð Þ
� �

: ð12Þ

Here AD and AC are the dielectric and cavity base areas, respectively, and kd is

the dielectric wave number in the z-direction. Equation (12) is plotted in Fig. 4. For

small values of d12 d12 � Hð Þ, j13 is practically constant. When the two modes are

degenerate (j12 = j13), the plot shows that d12 is at 2 mm. This is a more accurate

value than the one predicted relying on the Cohn model (1.5 mm).

Previously, the TEþþþ mode was used in EPR experiments. It was shown that by

exploiting this mode, the signal-to-noise ratio is enhanced by 24 times besides the

capability of tuning the resonant frequency over a considerable range [12, 13].

Figure 3 shows that the frequency of the TEþþþ � d12 curve is approximately

linear beyond the degeneracy point where j13 [ j12. In this range, when j13 � 1,

the frequency given by Eq. (2) can be written as the approximately linear form:

xþþþ � x0 1�
ffiffiffi
2

p
j13

� �1
2� x0 1�

ffiffiffi
2

p

2
j13

� �
: ð13Þ

Equation (13) indicates that the effective coupling coefficient, j013 ¼
ffiffiffi
2

p
j13, is

larger than that when only one DR is inserted in the same position of one of either

the two dielectrics DR1 or DR2. From Eq. (12) and noting that d12 � h, the

coupling coefficient j13 can be written as:

Fig. 4 Coupling coefficients j12 and j13 plotted for various separation distance d12
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j13 ¼ j013 cos
pd12
2H

� �
; ð14Þ

where j013 is the coupling coefficient when the DR is located at the cavity center.

Using Eq. (14), the frequency xþþþ can be linearized around d12 ¼ H=2 to give:

xþþþ � x0 1� j013
2

þ j013p
4H

x

� �
� x0 1� j013

2
� j013p

4
þ j013pd12

4H

� �
; ð15Þ

where x ¼ ðd12 � HÞ=2. The approximate relation between xþþþ and d12 in

Eq. (15) is plotted in Fig. 5. Indeed it clearly shows that the frequency is fairly

linear over a frequency span of 500 MHz when d12 changes by 2 cm. Equation (15)

also suggests that to increase the tuneable range, one can decrease the CV height

and/or increase the coupling between the CV and the DR when inserted at the CV

center.

3.2 Asymmetrically Placed DRs

In Ref. [12] it was demonstrated that if the dielectrics were asymmetrically placed in

a TE102 rectangular cavity, one of the DR houses the sample, while the other one

acts as a frequency tuner. Using Eq. (14), the parameter b appearing in Eq. (8) is

found to be:

b ¼ cos
pd12
2H

� �
: ð16Þ

Since one of the DRs is held at the CV center, in this new configuration the

distance between them is d12=2. The eigenvalue problem represented by Eq. (1) and

the simplified Eq. (8) of the frequency of the TEþþþ mode are solved for different

separations of the d12=2 variable. The results are plotted in Fig. 6, and compared to

the values obtained using HFSS eigenmodes solver.

Fig. 5 Linearization of the frequency versus the separation distance for the TEþþþ mode
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Figure 6 indicates that the frequency of the TEþþþ mode can be tuned over a

substantial range (600 MHz) when DR1 is shifted relative to DR2 housed at the

cavity center. This is better explained by referring to Eq. (8) of the mode frequency

and the expression of b given by Eq. (16). As d12 increases, b decreases and from

(Eq. 8) the frequency increases. However, when d12 is small (for this configuration

\4 mm), j12 cannot be ignored and the solution of Eq. (1) gives more reliable

results, as Fig. 6 illustrates.

The eigenvector of the TEþþþ mode, given by (Eq. 9), can be applied to find the

electric field of the coupled mode. However, for EPR spectroscopy, one is more

interested in the magnetic field component, which can be approximated as:

H
*þþþ

¼ bffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

p H
*

1 þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 1
p H

*

2 þ H
*

3: ð17Þ

For a given d12=2, b can be calculated from Eq. (16) and the magnitude of the

magnetic field intensity is determined via Eq. (17). In Fig. 7, the calculation was

carried out for d12=2 ¼ 9 mm and compared to those obtained using finite element

simulation.

Figure 7 shows that the eigenvector calculated using Eq. (9) can be used to

predict the profile of the fields of the TEþþþ mode. For this particular configuration,

DR1 acts as a frequency tuner. From (Eq. 16), bj j � 1, which according to (Eq. 17)

implies that the magnetic field in the DR2 is always greater than the field in DR1

(tuner). The larger d12 is, the smaller b and consequently the energy stored in the

tuner decreases until the TEþþþ mode approaches the symmetric mode of the

cavity-dielectric probe described in [8].

Finally one compares the filling factor of the two stacked dielectric resonators to

a single dielectric resonator in a cylindrical cavity. The filling factor is defined as

the integral of the stored energy in the magnetic field integrated over the sample

volume divided by the energy stored in the whole cavity:

Fig. 6 Frequency change of the TEþþþ mode as DR1 position changes along the cavity axis
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g ¼
R
VSample

B1xj j2dvR
VCavity

B1xj j2dv
¼
R
VSample

H1xj j2dvR
VCavity

H1xj j2dv
;

here B1x ¼ l0H1x. The time-averaged magnetic energy,WM, stored in the entire DR/

TE102 probe with volume, VCavity, is:

WM ¼ 1

4
l0

Z
VCavity

H1xj j2dv:

By comparing this equation to the denominator of the previous one and assuming

that WM is normalized to unity one gets [12]:

g � pr2l0
2

Z ‘

0

H1xj j2dx:

Here ‘ is the length of the sample and r is the radius of the DR2 inner hole. The

term H1x is the magnetic component of the exciting microwave field in the x-

direction of the laboratory frame. In this case, it is equivalent to Hþþþ
x . By

substituting Eq. (17) into this last equation one obtains:

g � pr2l0
2

Z ‘

0

bffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

p H1 þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 1
p H2 þ H3

 !�����
�����
2

dx:

In the case of a single resonator b ¼ 0 and this equation reduces to:

g � pr2l0
2

Z ‘

0

H2 þ H3ð Þj j2dx:

Fig. 7 Normalized magnitude of the magnetic field along the cavity axis using both ECMT and HFSS
eigenmode solver. DR2 is fixed at the CV center and DR1 placed 9 mm away. The shaded rectangles
highlight the positions of DR1 and DR2
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From these last two equations and Fig. 7, it is clear that the probe’s filling factor

of the two stacked DRs in a CV is always lower than that of a single DR in a CV

probe.

However, as the tuner resonator (DR1) is moved farther away from the CV center

b decreases. Consequently its contribution diminishes and the filling factor

increases. When DR1 gets very close to the CV wall, its contribution further

decreases, due to the ‘‘image effect’’. The induced image across the cavity wall

couples anti-symmetrically with the DR1 mode. This results in a significant

reduction of the axial component of the DR1 magnetic field [7].

4 Summary and Conclusions

An EPR probe consisting of two stacked DRs placed in a CV is studied using

ECMT. The coupled frequencies and eigenvectors are analytically derived.

For a specific separation distance between the two dielectrics, d12, the two higher

modes, TEþþ� and TEþ��, are degenerate. Based on ECMT, the degeneracy

condition occurs when j12 ¼ j13. In other words, when the coupling coefficient

between the two dielectrics is equal to that of the dielectric-cavity pair.

From the eigenvector of the TEþ�� mode, it is clear that this mode is completely

dielectric in character and the cavity does not play any role in the coupling. This is

attributed to the fact that the coupled energy pumped into the mode through the

cavity is exactly equal to that pumped out of the mode back to the cavity. This is

similar to the EIT-like system studied in [21, 22].

The frequency of the TEþþþ mode is linear over a considerable separation

distance d12. Using ECMT, this linear relation was obtained and compared to finite

element simulations. The mode shows a frequency change of 500 MHz when d12
changes by 2 cm. Thus, besides improving the signal-to-noise ratio this mode is

ideal for EPR experiments when, a tuning capability of the probe is required [12].

Finally, the asymmetric configuration was studied. In this configuration, one of

the resonators (DR2) was kept at the cavity center and the other was allowed to

move along the cavity’s z-axis. The resulting frequency curve indicates that indeed

DR1 acts as a frequency tuner. The system’s frequency changes approximately

600 MHz as the distance between the two DRs changes by 1.5 cm. Since the spatial

magnetic field distribution is one of the most important parameters in EPR

spectroscopy, a formula for the magnetic field along the cavity axis was proposed

based on ECMT. The formula produces results that are in close agreement with

those produced by a full-wave finite element simulator (HFSS). Thus, the

electromagnetic field expressions and coupled frequencies can be applied to study

complex EPR probes.
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